首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rates and regulation of nitrogen cycling in seasonally hypoxic sediments during winter (Boknis Eck,SW Baltic Sea): Sensitivity to environmental variables
Authors:AW Dale  S SommerL Bohlen  T TreudeVJ Bertics  HW BangeO Pfannkuche  T SchorpM Mattsdotter  K Wallmann
Institution:IFM–GEOMAR Leibniz Institute of Marine Sciences, Wischhofstrasse 1–3, 24148 Kiel, Germany
Abstract:This study investigates the biogeochemical processes that control the benthic fluxes of dissolved nitrogen (N) species in Boknis Eck – a 28 m deep site in the Eckernförde Bay (southwestern Baltic Sea). Bottom water oxygen concentrations (O2−BW) fluctuate greatly over the year at Boknis Eck, being well-oxygenated in winter and experiencing severe bottom water hypoxia and even anoxia in late summer. The present communication addresses the winter situation (February 2010). Fluxes of ammonium (NH4+), nitrate (NO3) and nitrite (NO2) were simulated using a benthic model that accounted for transport and biogeochemical reactions and constrained with ex situ flux measurements and sediment geochemical analysis. The sediments were a net sink for NO3 (−0.35 mmol m−2 d−1 of NO3), of which 75% was ascribed to dissimilatory reduction of nitrate to ammonium (DNRA) by sulfide oxidizing bacteria, and 25% to NO3 reduction to NO2 by denitrifying microorganisms. NH4+ fluxes were high (1.74 mmol m−2 d−1 of NH4+), mainly due to the degradation of organic nitrogen, and directed out of the sediment. NO2 fluxes were negligible. The sediments in Boknis Eck are, therefore, a net source of dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) during winter. This is in large part due to bioirrigation, which accounts for 76% of the benthic efflux of NH4+, thus reducing the capacity for nitrification of NH4+. The combined rate of fixed N loss by denitrification and anammox was estimated at 0.08 mmol m−2 d−1 of N2, which is at the lower end of previously reported values. A systematic sensitivity analysis revealed that denitrification and anammox respond strongly and positively to the concentration of NO3 in the bottom water (NO3BW). Higher O2−BW decreases DNRA and denitrification but stimulates both anammox and the contribution of anammox to total N2 production (%Ramx). A complete mechanistic explanation of these findings is provided. Our analysis indicates that nitrification is the geochemical driving force behind the observed correlation between %Ramx and water depth in the seminal study of Dalsgaard et al. (2005). Despite remaining uncertainties, the results provide a general mechanistic framework for interpreting the existing knowledge of N-turnover processes and fluxes in continental margin sediments, as well as predicting the types of environment where these reactions are expected to occur prominently.
Keywords:denitrification  modelling  anammox  Kiel Bight  nitrogen cycle  hypoxia
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号