首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrodynamic response of the Breton Sound estuary to pulsed Mississippi River inputs
Authors:Haosheng Huang  Dubravko JusticRobert R Lane  John W DayJaye E Cable
Institution:Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, 320 Howe-Russell Geoscience Complex, Baton Rouge, LA 70810, United States
Abstract:Pulsed re-introduction of Mississippi River water into the deltaic plain has been proposed as a wetland restoration strategy for coastal Louisiana. In this study, the hydrodynamic response of the Breton Sound estuary to a two-week pulse of Mississippi River water via the Caernarvon river diversion structure was investigated using a barotropic, three-dimensional, Finite-Volume Coastal Ocean Model (FVCOM). The numerical model was driven by tidal and subtidal forcing at the open Gulf boundary, freshwater discharge from the Caernarvon river diversion structure, as well as wind stress at the water surface. After successfully validating the model with field observations, three numerical experiments were run to assess the response of current, water level, and marsh flooding to different diversion discharge scenarios. The three scenarios considered were: a pulsed scenario of ∼200 m3 s−1 corresponding to the actual diversion discharge in March 2001, a constant discharge scenario of 40 m3 s−1 corresponding to the annually averaged discharge of 2001, and a scenario with no discharge. Numerical simulation results indicated that constant 40 m3 s−1 discharge caused little change in wetland inundation comparing to the no discharge case and, thus, inter-exchange between deep channels and the wetlands was not improved by this rate of diversion discharge. In contrast, the two-week ∼200 m3 s−1 discharge caused enhanced water exchange between wetlands and adjacent water bodies, substantially increasing water velocity in the bayous and channels of the upper estuary. These effects occurred in the estuary to about 20–25 km from the diversion structure, and caused a noticeable increase in down-estuary residual current with a significant reduction of local estuarine residence times for the whole estuary. Beyond 30 km from the diversion structure, the impact of high water discharge was small and the hydrodynamics was mostly controlled by tides and wind.
Keywords:river diversion  wetlands  hydrodynamics  water currents  residence time  USA  Louisiana  Breton Sound estuary
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号