首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The post-RLOF structure of the secondary components in close binary systems,with an application to masses of Wolf-Rayet stars
Authors:P Hellings
Institution:(1) Astrophysical Institute, Vrije Universiteit Brussel, Belgium
Abstract:The post-RLOF structure of the secondary after relaxation towards thermal equilibrium is calculated for a large grid of massive close binaries evolving through an early caseB of mass transfer. The initial primary masses range between 15 and 30M o, the initial mass ratio between 0.3 and 0.9. The possibility that matter leaves the system during RLOF is included using an additional free parameter beta. The calculations are based on the accretion and relaxation properties of massive accretion stars. Conclusions on the post-RLOF secondaries are presented in function of beta, M1i, andq i , in the form of tables and figures on the post-RLOF positions in the HR diagram, the final masses, mass ratios, chemical profiles and the remaining core-hydrogen burning lifetime. It is found that all systems starting from initial conditions in the grid specified above evolve sequentially, i.e. the primary evolves into a supernova before the end of core H burning of the secondary. No WR+WR systems are encountered. The results are used to determine the masses of ten double lined spectroscopic WR+OB binaries. Most of the WR masses are in the range 8–14M o, although the sample is subject to some important selection effects. One WR+OB binary has a WR mass between 4 and 5M o. It is argued that mass determinations based only on the spectral type of the secondary yield WR masses that are too high up to a factor two.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号