首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lithospheric necking: a dynamic model for rift morphology
Authors:MT Zuber  EM Parmentier
Abstract:Rifting is examined in terms of the growth of a necking instability in a lithosphere consisting of a strong plastic or viscous surface layer of uniform strength overlying a weaker viscous substrate in which strength is either uniform or decreases exponentially with depth. As the lithosphere extends, deformation localizes about a small imposed initial perturbation in the strong layer thickness. For a narrow perturbation, the resulting surface topography consists of a central depression and uplifted flanks; the layer thins beneath the central depression. The width of the rift zone is related to the dominant wavelength of the necking instability, which in turn is controlled by the layer thickness and the mechanical properties of the lithosphere. For an initial thickness perturbation with a width less than the dominant wavelength, deformation concentrates into a zone comparable to the dominant wavelength. If the initial perturbation is wider than the dominant wavelength, then the width of the zone of deformation is controlled by the width of the initial perturbation; deformation concentrates in the region of enhanced thinning and develops periodically at the dominant wavelength. A surface layer with limiting plastic (stress exponent n = ∞) behavior produces a rift-like structure with a width typical of continental rifts for a strong layer thickness consistent with various estimates of the maximum depth of brittle deformation in the continental lithosphere. The width of the rift is essentially independent of the layer/substrate strength ratio. For a power law viscous surface layer (n = 3), the dominant wavelength varies with layer/substrate strength ratio to the one-third power and is always larger than for a plastic surface layer of the same thickness. The great widths of rift zones on Venus may be explained by unstable extension of a strong viscous surface layer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号