首页 | 本学科首页   官方微博 | 高级检索  
     

勒让德方程的解北大核心CSCD
引用本文:张捍卫,张 华,杨永勤,李晓玲. 勒让德方程的解北大核心CSCD[J]. 大地测量与地球动力学, 2023, 43(2): 111-115
作者姓名:张捍卫  张 华  杨永勤  李晓玲
作者单位:1.河南理工大学测绘与国土信息工程学院454000;
基金项目:国家自然科学基金(42074002,41931075)。
摘    要:勒让德方程两个线性无关的解,分别称为第一类和第二类勒让德函数。在微分方程取本征值情况下,第一类勒让德函数中断为多项式,因此自变量可取任意值(无穷大除外);第二类勒让德函数仍然为无穷级数,当自变量等于±1时发散,绝对值大于1时收敛。由于勒让德方程属于超比方程类型,给出此类型方程不同特殊函数的任意阶导数表达式。在此基础上直接给出第一类勒让德函数的超比表达式,及其与其他特殊函数的理论关系;鉴于求解第二类勒让德函数的复杂性,利用级数展开方法,直接给出第二类勒让德函数的超比表达式。

关 键 词:勒让德方程  连带勒让德方程  超比方程  多项式  无穷级数展开式

The Solution of Legendre Equation
ZHANG Hanwei,ZHANG Hua,YANG Yongqin,LI Xiaoling. The Solution of Legendre Equation[J]. Journal of Geodesy and Geodynamics, 2023, 43(2): 111-115
Authors:ZHANG Hanwei  ZHANG Hua  YANG Yongqin  LI Xiaoling
Abstract:The two linearly independent solutions of Legendre equation are called the first and second kind of Legendre functions, respectively. When the differential equation takes the eigenvalue, the first kind of Legendre function is interpreted as a polynomial, so the independent variable can take any value (except infinity). The second kind of Legendre function is still infinite series, diverging when the independent variable is equal to ±1 and converging when the absolute value is greater than 1. Since Legendre equation belongs to the type of hypergeometric equation, we give the expression of arbitrary order derivatives of different special functions of this type equation. Therefore, the hypergeometric expression of the first kind of Legendre function and its theoretical relationship with other special functions are given directly. In view of the complexity of solving the second kind of Legendre function, the hypergeometric expression of the second kind of Legendre function is directly given by using the series expansion method.
Keywords:Legendre equation  associated Legendre equation  hypergeometric equation  polynomial  infinite series expansion  
本文献已被 维普 等数据库收录!
点击此处可从《大地测量与地球动力学》浏览原始摘要信息
点击此处可从《大地测量与地球动力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号