Influences of climate change on California and Nevada regions revealed by a high-resolution dynamical downscaling study |
| |
Authors: | Lin-Lin Pan Shu-Hua Chen Dan Cayan Mei-Ying Lin Quinn Hart Ming-Hua Zhang Yubao Liu Jianzhong Wang |
| |
Affiliation: | 1. Department of Land, Air and Water Resources, University of California, One Shields Avenue, Davis, CA, 95616, USA 2. Research Applications Laboratory, National Center for Atmospheric Research, Boulder, CO, USA 3. Scripps Institution of Oceanography, University of California, San Diego, CA, USA 4. Taiwan Typhoon and Flood Research Institute, Taichung, Taiwan 5. California Department of Water Resources, Sacramento, CA, USA
|
| |
Abstract: | In this study, the influence of climate change to California and Nevada regions was investigated through high-resolution (4-km grid spacing) dynamical downscaling using the WRF (Weather Research & Forecasting) model. The dynamical downscaling was performed to both the GFS (Global forecast model) reanalysis (called GFS-WRF runs) from 2000?C2006 and PCM (Parallel Climate Model) simulations (called PCM-WRF runs) from 1997?C2006 and 2047?C2056. The downscaling results were first validated by comparing current model outputs with the observational analysis PRISM (Parameter-elevation Regressions on Independent Slopes Model) dataset. In general, the dominant features from GFS-WRF runs and PCM-WRF runs were consistent with each other, as well as with PRISM results. The influences of climate change on the California and Nevada regions can be inferred from the model future runs. The averaged temperature showed a positive trend in the future, as in other studies. The temperature increases by around 1?C2°C under the assumption of business as usual over 50?years. This leads to an upward shifting of the freezing level (the contour line of 0°C temperature) and more rain instead of snow in winter (December, January, and February). More hot days (>32.2°C or 90°F) and extreme hot days (>37.8°C or 100°F) are predicted in the Sacramento Valley and the southern parts of California and Nevada during summer (June, July, and August). More precipitation is predicted in northern California but not in southern California. Rainfall frequency slightly increases in the coast regions, but not in the inland area. No obvious trend of the surface wind was indicated. The probability distribution functions (PDF) of daily temperature, wind and precipitation for California and Nevada showed no significant change in shape in either winter or summer. The spatial distributions of precipitation frequency from GFS-WRF and PCM-WRF were highly correlated (r?=?0.83). However, overall positive shifts were seen in the temperature field; increases of 2°C for California and 3°C for Nevada in summer and 2.5°C for California and 1.5°C for Nevada in winter. The PDFs predicted higher precipitation in winter and lower precipitation in the summer for both California and Nevada. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|