首页 | 本学科首页   官方微博 | 高级检索  
     

灾害应急环境下智能终端高精度北斗增强定位方法
引用本文:刘一, 谷守周, 边少锋, 秘金钟, 崔聪聪. 一种基于观测数据集密度中心的新型RAIM算法[J]. 武汉大学学报 ( 信息科学版), 2021, 46(12): 1900-1906. DOI: 10.13203/j.whugis20210234
作者姓名:刘一  谷守周  边少锋  秘金钟  崔聪聪
作者单位:1.海军工程大学电气工程学院,湖北 武汉,430030;2.中国测绘科学研究院,北京,100089;3.广西空间信息与测绘重点实验室,广西 桂林,541004;4.北京新兴华安智慧科技有限公司,北京,100070
基金项目:国家重点研发计划(2016YFB0501801);国家自然科学基金(41631072,41971416);全球连续监测评估系统项目(GFZX0301040308-06);湖北省杰出青年科学基金(2019CFA086);广西空间信息与测绘重点实验室资助课题(19-050-11-02)
摘    要:针对当前接收机自主完好性监测(receiver autonomous integrity monitoring,RAIM)中多个粗差难以快速有效识别的问题,在相关分析粗差检验理论的基础上,提出了一种基于观测数据集密度中心的多粗差探测RAIM算法。首先,利用QR检校法构建观测数据集;其次,使用改进的Mean Shift模型估计观测数据集密度中心;最后,对观测特征点与密度中心相关距离进行检验,实现多个粗差探测识别。利用实测数据仿真粗差,对粗差卫星和正常卫星与检校向量的相关距离差异进行分析,在存在单个、两个、3个粗差的情况下,粗差卫星和正常卫星与密度中心的相关距离平均差异分别为1.122 m和1.516 m、1.021 m和1.266 m、1.177 m和1.588 m;粗差卫星和正常卫星与残差向量的相关距离差异分别为0.639 m和1.142 m、0.497 m和0.510 m、0.108 m和0.198 m。结果表明,与基于残差向量的相关分析RAIM算法相比,在两个或多个粗差存在的情况下,基于密度中心相关分析的RAIM算法具有更优的粗差探测识别性能,可有效提高多系统定位可靠性。

关 键 词:接收机自主完好性监测  相关分析  多粗差  密度中心  单点定位
收稿时间:2021-05-19

GNSS Receiver Autonomous Integrity Monitoring (RAIM) Performance Analysis
LIU Yi, GU Shouzhou, BIAN Shaofeng, BEI Jinzhong, CUI Congcong. A New RAIM Algorithm Based on the Density Center of Observed Dataset[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1900-1906. DOI: 10.13203/j.whugis20210234
Authors:LIU Yi  GU Shouzhou  BIAN Shaofeng  BEI Jinzhong  CUI Congcong
Affiliation:1.Department of Navigation, Naval University of Engineering, Wuhan 430030, China;2.Chinese Academy of Surveying and Mapping, Beijing 100089, China;3.Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin 541004, China;4.Beijing Xinxinghua'an Intelligence Technology Co. Ltd., Beijing 100070, China
Abstract:  Objectives  With the development of the global navigation satellite system (GNSS), the number of visible satellites has increased, and the constellation configuration has been improved. While improving user observation information, multi-system GNSS positioning increases the risk of multiple gross errors, posing a threat to the integrity of the system and restricting the application of GNSS in complex environments. A common method, the receiver autonomous integrity monitoring (RAIM) to ensure the reliability of positioning based on single error, but the reliability of positioning would decline in the case of multiple gross errors. The problem of poor detection and recognition, based on the correlation analysis method of the post-test residual vector, the residual vector is affected by multiple gross errors, showing that the correlation with the observed feature vector of gross errors is weakened. The phenomenon makes gross error detection distortion. The aim of the study is to improving the accuracy of multiple gross errors detection by a new RAIM algorithm based on the density center of observed dataset.  Methods  This paper proposes a correlation analysis method based on the density center of the observation data set to realize the detection and identification of multiple gross errors. Firstly, we construct the observation dataset through the QR calibration method. Then, we estimate the density center by the improved Mean Shift model. Finally, we test the correlation distance between the observation feature points and the density center for detection and recognition of multiple gross errors was compared.  Result  The gross errors are simulated by the factual observation data, and the correlation distance of density center to gross error satellite and normal satellite, In the case of a single gross error, two gross errors, and three gross errors, the average difference correlation distance are 1.122 m and 1.516 m, 1.021 m and 1.266 m, 1.177 m and 1.588 m respectively. Compared the correlation distance of QR test vector to gross error satellite and normal satellite, the average difference correlation distance are 0.639 m and 1.142 m, 0.497 m and 0.510 m, 0.108 m and 0.198 m respectively.  Conclusions  The new RAIM algorithm overcomes the problem of gross error detection distortion caused by the reduced correlation between the calibration vector and the observation vector in the presence of multiple gross errors, which can effectively improve the reliability of multi-GNSS positioning.
Keywords:receiver autonomous integrity monitoring (RAIM)  correlative analysis  multiple gross errors  density center  single point positioning
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号