首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Controls on the morphology of braided rivers and braid bars: An empirical characterization of numerical models
Authors:Wei Li  Luca Colombera  Dali Yue  Nigel P Mountney
Institution:1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, 102249 China;2. Fluvial, Eolian & Shallow-Marine Research Group, School of Earth & Environment, University of Leeds, Leeds, LS2 9JT UK
Abstract:Braided rivers exhibit highly variable morphologies, morphodynamic behaviours and resulting depositional records. To evaluate relationships between characteristics of braided-river channel belts and river depth, water discharge and streambed gradient, 39 numerical modelling experiments were conducted with the software Delft3D to simulate braided-river evolution under a broad range of boundary conditions. Data from model outputs were integrated with observations from 63 natural braided rivers differing with respect to river depth and streambed gradient. The modelled rivers each underwent similar evolutions, yet each culminated in markedly different final river morphologies, dependent on discharge and riverbed gradient. The rivers underwent evolutionary stages of: (i) formation of transverse unit bars with limited relief from an initially featureless bed; (ii) channel development around bars and in some cases dissecting transverse unit bars; (iii) formation of relatively simpler compound bars; and (iv) amalgamation of these simpler compound bars into more complex compound bars. Quantitative relationships relating to braided-river channel-belt morphology and organization are established, and the following results are noted: (i) bar elongation (length-to-width ratio) is correlated positively with riverbed gradient; (ii) bar height and area are correlated positively with discharge, and negatively with riverbed gradient; (iii) the river depth is the main predictor of mean braid-bar area; and (iv) the degree of braiding is primarily associated with river width-to-depth ratio and riverbed gradient. Results arising from this research improve our understanding of controls on the morphology and architectures of braided fluvial channel belts; they provide a novel empirical characterization that can be applied for predicting channel depth, bar morphology, streambed gradient, and degree of braiding of modern fluvial systems and of the formative rivers of ancient preserved successions.
Keywords:Braided river  Delft3D  discharge  gradient  morphology  numerical simulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号