首页 | 本学科首页   官方微博 | 高级检索  
     

利用遥感技术建立墨西哥热带地上生物量模型(英文)
引用本文:AGUIRRE-SALADO Carlos Arturo,TREVIO-GARZA Eduardo Javier,AGUIRRE-CALDERóN Oscar Alberto,JIMéNEZ-PéREZ Javier,GONZáLEZ-TAGLE Marco Aurelio,VALDEZ-LAZALDE José René,MIRANDA-ARAGóN Liliana,AGUIRRE-SALADO Alejandro Iván. 利用遥感技术建立墨西哥热带地上生物量模型(英文)[J]. 地理学报(英文版), 2012, 22(4): 669-680. DOI: 10.1007/s11442-012-0955-9
作者姓名:AGUIRRE-SALADO Carlos Arturo  TREVIO-GARZA Eduardo Javier  AGUIRRE-CALDERóN Oscar Alberto  JIMéNEZ-PéREZ Javier  GONZáLEZ-TAGLE Marco Aurelio  VALDEZ-LAZALDE José René  MIRANDA-ARAGóN Liliana  AGUIRRE-SALADO Alejandro Iván
作者单位:Autonomous University of Nuevo Leon,Linares NL 67700,Mexico;Autonomous University of San Luis Potosi,SLP 78290,Mexico;The College of Postgraduates,Texcoco MEX 56230,Mexico
摘    要:Spatially-explicit estimation of aboveground biomass(AGB) plays an important role to generate action policies focused in climate change mitigation,since carbon(C) retained in the biomass is vital for regulating Earth’s temperature.This work estimates AGB using both chlorophyll(red,near infrared) and moisture(middle infrared) based normalized vegetation indices constructed with MCD43A4 MODerate-resolution Imaging Spectroradiometer(MODIS) and MOD44B vegetation continuous fields(VCF) data.The study area is located in San Luis Potosí,Mexico,a region that comprises a part of the upper limit of the intertropical zone.AGB estimations were made using both individual tree data from the National Forest Inventory of Mexico and allometric equations reported in scientific literature.Linear and nonlinear(expo-nential) models were fitted to find their predictive potential when using satellite spectral data as explanatory variables.Highly-significant correlations(p = 0.01) were found between all the explaining variables tested.NDVI62,linked to chlorophyll content and moisture stress,showed the highest correlation.The best model(nonlinear) showed an index of fit(Pseudo-r2) equal to 0.77 and a root mean square error equal to 26.00 Mg/ha using NDVI62 and VCF as explanatory variables.Validation correlation coefficients were similar for both models:lin-ear(r = 0.87**) and nonlinear(r = 0.86**).

关 键 词:MODIS  MCD43A4  MOD44B  forest inventory  regression

Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico
Carlos Arturo Aguirre-Salado,Eduardo Javier Trevi?o-Garza,Oscar Alberto Aguirre-Calderón,Javier Jiménez-Pérez,Marco Aurelio González-Tagle,José René Valdez-Lazalde,Liliana Miranda-Aragón,Alejandro Iván Aguirre-Salado. Construction of aboveground biomass models with remote sensing technology in the intertropical zone in Mexico[J]. Journal of Geographical Sciences, 2012, 22(4): 669-680. DOI: 10.1007/s11442-012-0955-9
Authors:Carlos Arturo Aguirre-Salado  Eduardo Javier Trevi?o-Garza  Oscar Alberto Aguirre-Calderón  Javier Jiménez-Pérez  Marco Aurelio González-Tagle  José René Valdez-Lazalde  Liliana Miranda-Aragón  Alejandro Iván Aguirre-Salado
Affiliation:AGUIRRE-SALADO Carlos Arturo1,2,TREVIO-GARZA Eduardo Javier1,AGUIRRE-CALDERóN Oscar Alberto1,JIMéNEZ-PéREZ Javier1,GONZáLEZ-TAGLE Marco Aurelio1,VALDEZ-LAZALDE José René3,MIRANDA-ARAGóN Liliana1,AGUIRRE-SALADO Alejandro Iván3 1.Autonomous University of Nuevo Leon,Linares NL 67700,Mexico;2.Autonomous University of San Luis Potosi,SLP 78290,Mexico;3.The College of Postgraduates,Texcoco MEX 56230,Mexico
Abstract:Spatially-explicit estimation of aboveground biomass(AGB) plays an important role to generate action policies focused in climate change mitigation,since carbon(C) retained in the biomass is vital for regulating Earth’s temperature.This work estimates AGB using both chlorophyll(red,near infrared) and moisture(middle infrared) based normalized vegetation indices constructed with MCD43A4 MODerate-resolution Imaging Spectroradiometer(MODIS) and MOD44B vegetation continuous fields(VCF) data.The study area is located in San Luis Potosí,Mexico,a region that comprises a part of the upper limit of the intertropical zone.AGB estimations were made using both individual tree data from the National Forest Inventory of Mexico and allometric equations reported in scientific literature.Linear and nonlinear(expo-nential) models were fitted to find their predictive potential when using satellite spectral data as explanatory variables.Highly-significant correlations(p = 0.01) were found between all the explaining variables tested.NDVI62,linked to chlorophyll content and moisture stress,showed the highest correlation.The best model(nonlinear) showed an index of fit(Pseudo-r2) equal to 0.77 and a root mean square error equal to 26.00 Mg/ha using NDVI62 and VCF as explanatory variables.Validation correlation coefficients were similar for both models:lin-ear(r = 0.87**) and nonlinear(r = 0.86**).
Keywords:MODIS  MCD43A4  MOD44B  forest inventory  regression
本文献已被 CNKI 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号