首页 | 本学科首页   官方微博 | 高级检索  
     


The scaling of flow in vegetative structures
Authors:Grant  Richard H.
Affiliation:(1) Meteorology and Assessment Division, Environmental Sciences Research Laboratory, Environmental Protection Agency, 27711 Research Triangle Park, North Carolina, USA
Abstract:Sensible heat flux data obtained from the U.S. Environmental Protection Agency's Regional Air Pollution Study in St. Louis, Missouri are presented and discussed. Large spatial variations exist in heat flux on both a land-use scale and the urban scale. Arguments based upon empirical data and sampling theory show that estimates of heat flux representative of an upwind fetch lx require a minimum observation height proportional to z3/4. The influence of advection on the magnitude of the heat flux is also explored for both the urban and sub-urban or land-use scales. The data clearly indicate that advection can strongly modulate and even dominate the vertical heat flux above surfaces in areas which maintain large horizontal temperature gradients. The advection contribution is positive for cold air advection and negative for warm air advection, and may result from either the urban heat island or land-use mesoscale features. The depth of advective influence is directly proportional to the horizontal scale of the phenomenon and inversely proportional to horizontal temperature gradient.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号