首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Once again: once again—tidal friction
Authors:Walter Munk
Abstract:Topex/Poseidon (T/P) altimetry has reopened the problem of how tidal dissipation is to be allocated. There is now general agreement of a M2 dissipation by 2.5 Terawatts (1 TW = 1012 W), based on four quite separate astronomic observational programs. Allowing for the bodily tide dissipation of 0.1 TW leaves 2.4 TW for ocean dissipation. The traditional disposal sites since (1920) have been in the turbulent bottom boundary layer (BBL) of marginal seas, and the modern estimate of about 2.1 TW is in this tradition (but the distribution among the shallow seas has changed radically from time to time). Independent estimates of energy flux into the marginal seas are not in good agreement with the BBL estimates.T/P altimetry has contributed to the tidal problem in two important ways. The assimilation of global altimetry into Laplace tidal solutions has led to accurate representations of the global tides, as evidenced by the very close agreement between the astronomic measurements and the computed 2.4 TW working of the Moon on the global ocean. Second, the detection by and (1996) of small surface manifestation of internal tides radiating away from the Hawaiian chain has led to global estimates of 0.2 to 0.4 TW of conversion of surface tides to internal tides. Measurements of ocean microstructure yields 0.2 TW of global dissipation by pelagic turbulence (away from topography). We propose that pelagic turbulence is maintained by topographic scattering of barotropic into baroclinic tidal energy, via internal tides and internal waves. Previous estimates by (1974); , (1982)) of this conversion along 150,000 km of continental coastlines gave a negligible 0.02 TW; evidently the important conversion takes place along mid-ocean ridges.The maintenance of the abyssal global stratification requires a much larger expenditure of power. 2 TW versus 0.2 TW. This is usually attributed to wind forcing. If tidal power is to play a significant role here, then the BBL estimates need to be reduced. The challenge is to estimate dissipation from the energy flux divergence in the T/P adjusted tidal models, without prior assumptions concerning the dissipation processes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号