首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reconstruct light curves from unevenly sampled variability data with artificial neural networks
Authors:Qi-Jie Wang  Xinwu Cao
Institution:1. School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
2. Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai, 200030, China
Abstract:Light curves are usually constructed from discrete observational data by interpolation. In most cases, the observation data is temporally uneven, and therefore the light curve is usually derived by the interpolation of the binned data with the spline function, which is intended for reducing the “high sample noise” (i.e., the variability in the timescales comparable with the bin width). Such a practice of course reduces the time resolution of the light curve. It is known that function approximation is one of the most important applications of the artificial neural networks (ANN). In this work, for the first time we tentatively use the ANN to construct light curves from unevenly sampled variability data. To demonstrate the advantages of ANN for signal reconstruction over commonly used cubic spline function scheme, two sets of simulated periodic functions are used with random noises of varying magnitudes, one single frequency based and one multiple (two) frequency based. These signal reconstruction tests show that the ANN is clearly superior to the cubic spline scheme. As a case study, we use the uneven long-term multi-band monitoring data of BL lacertae to derive the light curves with ANN. It is found that the light curves derived with ANN have higher time resolution than those with the cubic spline function adopted in previous works. We recommend using ANN for the signal reconstruction in astrophysical data analysis as well as that of in other fields.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号