首页 | 本学科首页   官方微博 | 高级检索  
     


Temperatures of Granulite-facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange
Authors:PATTISON, DAVID R. M.   CHACKO, THOMAS   FARQUHAR, JAMES   MCFARLANE, CHRISTOPHER R. M.
Affiliation:1 DEPARTMENT OF GEOLOGY AND GEOPHYSICS, UNIVERSITY OF CALGARY, CALGARY, AB, T2N 1N4, CANADA
2 DEPARTMENT OF EARTH AND ATMOSPHERIC SCIENCES, UNIVERSITY OF ALBERTA, EDMONTON, AB, T6G 2E3, CANADA
3 DEPARTMENT OF GEOLOGY AND EARTH SYSTEM SCIENCE INTERDISCIPLINARY CENTRE, UNIVERSITY OF MARYLAND, COLLEGE PARK, MD 20742, USA
4 DEPARTMENT OF GEOLOGICAL SCIENCES, THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX 78701, USA
Abstract:This study assesses temperatures of formation of common granulitesby combining experimental constraints on the P–T stabilityof granulite-facies mineral associations with a garnet–orthopyroxene(Grt–Opx) thermobarometry scheme based on Al-solubilityin Opx, corrected for late Fe–Mg exchange. We appliedthis scheme to 414 granulites of mafic, intermediate and aluminousbulk compositions. Our findings suggest that granulites aremuch hotter than traditionally assumed and that the P–Tconditions of the amphibolite–granulite transition portrayedin current petrology textbooks are significant underestimatesby over 100°C. For aluminous and intermediate granulites,mean corrected temperatures based on our method are 890 ±17 and 841 ± 11°C, respectively (uncertainties reportedas 95% confidence limits on the mean), consistent with minimumtemperatures for orthopyroxene production by fluid-absent partialmelting in these bulk compositions. In contrast, mean temperaturesbased on Grt–Opx Fe–Mg exchange equilibria, usingthe same thermodynamic data, are 732 ± 22 and 723 ±11°C, respectively, well below the minimum temperaturesfor Opx stability. For mafic granulites, the mean correctedtemperature using our method is 816 ± 12°C, similarto the mean temperature of 793 ± 13°C from Fe–Mgexchange. Reasons for the differences between the mafic granulitesand aluminous–intermediate granulites are unclear butmay be due to the lower Al concentrations in Opx in the maficrocks and possible deficiencies in the thermodynamic modellingof these low concentrations. We discuss a number of well-knowngranulite terrains in the context of our findings, includingthe Adirondacks, the Acadian granulites of New England, theincipient charnockites of southern India and Sri Lanka, andthe Kerala Khondalite Belt. Our findings carry implicationsfor thermotectonic models of granulite formation. A computerprogram to perform our thermobarometry calculations, RCLC, isavailable from the Journal of Petrology website at http://www.petrology.oupjournals.orgor from the authors at http://www.geo.ucalgary.ca/~pattison/drm_pattison-rclc.htm. KEY WORDS: granulite-facies metamorphism; thermobarometry; garnet; orthopyroxene
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号