首页 | 本学科首页   官方微博 | 高级检索  
     


U-Pb age and genetic significance of heterogeneous zircon populations in rocks from the Favourable Lake area,Northwestern Ontario
Authors:F. Corfu  L. D. Ayres
Affiliation:(1) Ontario Geological Survey, c/o Department of Mineralogy and Geology, Royal Ontario Museum, 100 Queen's Park, M5S 2C6 Toronto, Ontario, Canada;(2) Department of Earth Sciences, University of Manitoba, R3T 2N2 Winnipeg, Manitoba, Canada
Abstract:The study evaluates the relationships between measured U-Pb ages and zircon characteristics of five morphologically, texturally, and isotopically complex zircon populations and compares the zircon development stages to the orogenic evolution of the Favourable Lake area. Two distinct zircon types from a hornblendite xenolith in a granitoid batholith of the Sachigo subprovince of the Superior Province yield U-Pb ages of 2729.0±6.8 Ma and 2714.8–6.4+7.4Ma, which date specific metamorphic phases coinciding with major plutonic pulses in the batholith. Zircons from a metamorphosed felsic dike, crosscutting the hornblendite, consist of an old zircon component with a minimum age of 2788 Ma possibly reflecting igneous crystallization gE 2950 Ma ago, and a younger component with an inferred age of 2725±15 Ma, probably reflecting metamorphism during batholith emplacement.In the Berens River subprovince to the south, granodiorite forms both a late tectonic phase in a large batholith and a post-tectonic pluton intruded into the batholith, yet zircons from these granodiorites have identical ages of 2697.3±1.7 Ma and 2696.2±1.2 Ma, respectively. The late tectonic granodiorite also contains inherited zircons with a minimum age of 2767 Ma which are indirect evidence for the presence of old sialic crust in this subprovince. Zircons from a sheared monzonite near the boundary fault between the two subprovinces yield an upper intercept age of 2769–26+63Ma, which we interpret as the intrusion age of the monzonite. This rock is older than most dated units in the surrounding batholiths and suggests that the boundary is a long-lived Archean structure.A lower intercept age of about 1750 Ma for zircons of the hornblendite is the result of chemical alteration of the zircons. This, and a similar lower intercept age shown by the sheared monzonite zircons, are thought to reflect increased fluid activity and possibly shearing during the Early Proterozoic Hudsonian orogeny which occurred in the Churchill Province to the northwest. A later Pb-loss mainly from near-surface domains of the zircons is indicated by lower intercept ages of about 500–100 Ma.Publication approved by the Director, Ontario Geological Survey
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号