首页 | 本学科首页   官方微博 | 高级检索  
     

基于RegCM4模式的中国区域日尺度降水模拟误差订正
引用本文:童尧,高学杰,韩振宇,徐影. 基于RegCM4模式的中国区域日尺度降水模拟误差订正[J]. 大气科学, 2017, 41(6): 1156-1166. DOI: 10.3878/j.issn.1006-9895.1704.16275
作者姓名:童尧  高学杰  韩振宇  徐影
作者单位:1.中国气象科学研究院, 北京 100081
基金项目:国家重点研发计划2016YFC0402405,公益性行业(气象)科研专项GYHY201306019,中国气象局气候变化专项项目CCSF201626
摘    要:气候模式模拟得到的各气候变量与观测相比,总会存在一定的偏差,所得到的气候变化预估结果难以在影响评估模型中直接应用。本文尝试对一个区域气候模式(RegCM4.4)所模拟的中国区域逐日降水,基于概率分布(分位数映射)方法进行统计误差订正。在订正过程中,以模拟时段1991~2010年中的前半段(1991~2000年)作为参照时段,建立传递函数,对后一时段(2001~2010年)进行订正并检验其效果。首先对使用参数和非参数所建立的6种不同传递函数方法进行对比,发现6种方法均可明显减少降水模拟的误差,其中利用非参数转换建立传递函数的RQUANT方法效果更好。随后进一步分析了采用该方法对模式模拟降水所做订正的效果,结果表明,该方法可以明显改善对平均降水,以及降水年际变率和极端事件的模拟结果。

关 键 词:区域气候模式   逐日降水   误差订正   传递函数
收稿时间:2016-11-30

Bias Correction of Daily Precipitation Simulated by RegCM4 Model over China
TONG Yao,GAO Xuejie,HAN Zhenyu and XU Ying. Bias Correction of Daily Precipitation Simulated by RegCM4 Model over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1156-1166. DOI: 10.3878/j.issn.1006-9895.1704.16275
Authors:TONG Yao  GAO Xuejie  HAN Zhenyu  XU Ying
Affiliation:1.Chinese Academy of Meteorological Science, Beijing 1000812.National Climate Center, China Meteorological Administration, Beijing 1000813.Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 1000294.University of Chinese Academy of Sciences, Beijing 1000495.Gaizhou Meteorological Bureau, Gaizhou 115200
Abstract:There are biases in climate model simulations compared to the observations, which makes it hard to directly use model simulations to drive the impact models. In the present study, the authors try to correct biases in daily precipitation simulated by a regional climate model (RegCM4.4) based on probability distribution (Quantile-Mapping) over China. Transfer functions are established from the reference period 1991-2000, and then applied to the period 2001-2010 to validate the performance of the method. Six different methods using parametric or nonparametric transformations are employed and compared to observations. Results show that all the six methods can effectively reduce the biases of the precipitation simulated, the RQUANT (Non-parametric quantile mapping using robust empirical quantiles) is found to perform better than other methods. Further analysis shows that RQUANT can significantly improve the simulation of the mean precipitation and the interannual variability and extreme events.
Keywords:Regional climate model  Daily precipitation  Bias correction  Transfer function
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《大气科学》浏览原始摘要信息
点击此处可从《大气科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号