首页 | 本学科首页   官方微博 | 高级检索  
     检索      


U-Pb zircon dating,Sr-Nd isotope and petrogenesis of Sarduiyeh granitoid in SE of the UDMA,Iran: implication for the source origin and magmatic evolution
Authors:Asma Nazarinia  Mohsen Arvin  Ruizhong Hu  Chenghai Zhao  Mohammad Poosti
Institution:1. Department of Geology, Faculty of Sciences, University of Hormozgan , Bandar Abbas, Iran;2. Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman , Kerman, Iran;3. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences , Guiyang, China
Abstract:ABSTRACT

The Sarduiyeh granitoid (SG) is intruded in the southeastern part of the Dehaj-Sarduiyeh volcano-sedimentary belt in the southeastern end of the Urumieh-Dokhtar Magmatic Arc (UDMA) in Iran. The medium-to-coarse-grained granitoid unit, with granular texture consists mainly of diorite, tonalite, granodiorite and monzogranitic rocks. Mineralogically, these rocks consist mainly of plagioclase, K-feldspar, quartz, biotite and hornblende. The whole rock geochemical analyses indicates that the SG is calc-alkaline, I-type, metaluminous, enriched in large ion lithophile elements (LILE; such as K, Cs, Pb) and depleted in high field strength elements (HFSE; such as Ti, Nb, Ta, Zr). Chondrite normalized plot of SG rare earth elements (REE) show light rare earth element enrichments with (LaN/YbN = 2.44–8.68) and flat heavy rare earth element patterns with (GdN/YbN = 1.02–1.36). The rather high Y (av. 19.35 ppm), low Sr content (av. 293.76 ppm) and low Cr and Ni contents (av. 20.1 and 4.69 ppm, respectively) of the SG demonstrate its normal calc-alkaline and non-adakitic nature, the features of Jebal Barez-type granitoids. The geochemical characteristics and isotopic composition, low ISr (0.7046–0.7049) and positive ?tNd (+3.4 to +4.03) values, of the SG suggest that its parental magma formed as a result of partial melting from metabasic rocks of lower crust in a subduction-related arc setting. Fractionation of an assemblage dominated by plagioclase, K-feldspar, amphibole and magnetite may have been responsible for the evolution of the SG magma. U-Pb zircon geochronology gives an age of 27.95 ± 0.27 Ma for the SG, suggesting that the final collision between the Arabian plate and Central Iranian microcontinent may have happened in the Late Oligocene.
Keywords:Sarduiyeh granitoid  UDMA  Dehaj-Sarduiyeh volcano-sedimentary belt  U-Pb dating  fractionation  Iran
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号