首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculation of the energetics for the oxidation of Sb(III) sulfides by elemental S and polysulfides in aqueous solution
Authors:JA Tossell
Institution:1 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
Abstract:Recent experimental studies have reported the existence of two new Sb sulfide species, Sb2S52− and Sb2S62−, in alkaline sulfidic solutions in equilibrium with stibnite, Sb2S3, and orthorhombic S. These species contain Sb(V), which has also recently been identified in similar solutions using EXAFS by other researchers. This represents a significant change from the consensus a decade ago that sulfidic solutions of Sb contained only Sb(III) species. I have calculated from first principles of quantum mechanics the energetics for the oxidation of the Sb(III) sulfide dimer Sb2S42− to the mixed Sb(III,V) dimer Sb2S52− and then to the all Sb(V) dimer, Sb2S62−. Gas-phase reaction energies have been evaluated using polarized valence double zeta effective core potential basis sets and Moller-Plesset second order treatments of electron correlation. All translational, rotational and vibrational contributions to the gas-phase reaction free energy have been calculated. Hydration energies have been obtained using the COSMO version of the self-consistent reaction field polarizable continuum method. Negative free energy changes are calculated for the oxidation of the dianion of the III,III dimer to the III,V dimer by both small polysulfides, like S4H, and elemental S, modeled as S8. For the further oxidation of the III,V dimer to the V,V dimer the reaction free energies are calculated to be close to zero. The partially protonated Sb III,III dimer monoanion HSb2S4 can also be oxidized, but the reaction is not so favorable as for the dianion. Comparison of the calculated aqueous deprotonation energies of H2Sb2S4, H2Sb2S5 and H2Sb2S6 and their dianions with values calculated for various oxyacids indicates that the III,V and V,V dimers will have pKa2 values <5, so that their dianions will be the dominant species in alkaline solutions. These results are thus consistent with the recent identification of Sb2S52− and Sb2S62− species. I have also calculated the Raman spectra of Sb2S52− and Sb2S62− to assist in their identification. The calculated vibrational frequencies of the III,V and V,V dimers are characteristically higher than those of the III,III dimer I previously studied. The III,V dimer may contribute shoulders to the Raman spectrum.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号