首页 | 本学科首页   官方微博 | 高级检索  
     


On some exceptional cases in the integrability of the three-body problem
Authors:Alexei V. Tsygvintsev
Affiliation:(1) Unité de mathématiques pures et appliquées, Ecole Normale Supérieure de Lyon, 46, allée d’Italie, Lyon, Lyon Cedex 07, 69364, France
Abstract:We consider the Newtonian planar three-body problem with positive masses m 1, m 2, m 3. We prove that it does not have an additional first integral meromorphic in the complex neighborhood of the parabolic Lagrangian orbit besides three exceptional cases ∑m i m j /(∑m k )2 = 1/3, 23/33, 2/32 where the linearized equations are shown to be partially integrable. This result completes the non-integrability analysis of the three-body problem started in papers [Tsygvintsev, A.: Journal für die reine und angewandte Mathematik N 537, 127–149 (2001a); Celest. Mech. Dyn. Astron. 86(3), 237–247 (2003)] and based on the Morales–Ramis–Ziglin approach.
Keywords:Meromorphic first integrals  Non-integrability  Ziglin’  s lemma  Three-body problem
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号