首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculation of the sun's acoustic impulse response by multi-dimensional spectral factorization
Authors:Rickett  JE  Claerbout  JF
Institution:(1) Geophysics Department, Stanford University, Stanford, CA 94305, USA
Abstract:Calculation of time-distance curves in helioseismology can be formulated as a blind-deconvolution (or system identification) problem. A classical solution in one-dimensional space is Kolmogorov's Fourier domain spectral-factorization method. The helical coordinate system maps two-dimensions to one. Likewise a three-dimensional volume is representable as a concatenation of many one-dimensional signals. Thus concatenating a cube of helioseismic data into a very long 1-D signal and applying Kolmogorov's factorization, we find we can construct the three-dimensional causal impulse response of the Sun by deconcatenating the Kolmogorov result. Time-distance curves calculated in this way have the same spatial and temporal bandwidth as the original data, rather than the decreased bandwidth obtained obtained by cross-correlating traces. Additionally, the spectral factorization impulse response is minimum phase, as opposed to the zero phase time-distance curves produced by cross-correlation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号