Improving the calibration strategy of the physically-based model WaSiM-ETH using critical events |
| |
Authors: | Shailesh Kumar Singh Jiaying Liang András Bárdossy |
| |
Affiliation: | 1. National Institute of Water and Atmospheric Research Ltd , Christchurch , New Zealand shailesh.singh@niwa.co.nz;3. Institute of Hydraulic Engineering , University of Stuttgart , D-70569 , Stuttgart , Germany |
| |
Abstract: | Abstract The use of a physically-based hydrological model for streamflow forecasting is limited by the complexity in the model structure and the data requirements for model calibration. The calibration of such models is a difficult task, and running a complex model for a single simulation can take up to several days, depending on the simulation period and model complexity. The information contained in a time series is not uniformly distributed. Therefore, if we can find the critical events that are important for identification of model parameters, we can facilitate the calibration process. The aim of this study is to test the applicability of the Identification of Critical Events (ICE) algorithm for physically-based models and to test whether ICE algorithm-based calibration depends on any optimization algorithm. The ICE algorithm, which uses the data depth function, was used herein to identify the critical events from a time series. Low depth in multivariate data is an unusual combination and this concept was used to identify the critical events on which the model was then calibrated. The concept is demonstrated by applying the physically-based hydrological model WaSiM-ETH on the Rems catchment, Germany. The model was calibrated on the whole available data, and on critical events selected by the ICE algorithm. In both calibration cases, three different optimization algorithms, shuffled complex evolution (SCE-UA), parameter estimation (PEST) and robust parameter estimation (ROPE), were used. It was found that, for all the optimization algorithms, calibration using only critical events gave very similar performance to that using the whole time series. Hence, the ICE algorithm-based calibration is suitable for physically-based models; it does not depend much on the kind of optimization algorithm. These findings may be useful for calibrating physically-based models on much fewer data. Editor D. Koutsoyiannis; Associate editor A. Montanari Citation Singh, S.K., Liang, J.Y., and Bárdossy, A., 2012. Improving calibration strategy of physically-based model WaSiM-ETH using critical events. Hydrological Sciences Journal, 57 (8), 1487–1505. |
| |
Keywords: | critical events physically-based model depth function ICE algorithm WaSim-ETH PEST SCE-UA ROPE |
|
|