首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physical-hydraulic properties of tropical sandy-loam soil in response to rice-husk dust and cattle dung amendments and surface mulching
Authors:Gloria I Ezenne  Jane Tanner
Institution:1. Institute for Water Research, Rhodes University , Grahamstown, South Africa;2. Department of Agricultural &3. Bioresources Engineering, University of Nigeria , Nsukka, Nigeria;4. Institute for Water Research, Rhodes University , Grahamstown, South Africa
Abstract:ABSTRACT

The effects of topsoil addition of rice-husk dust (RHD) and cattle dung (CD), alongside surface mulching with dry grasses/legume, on the infiltration characteristics and intrinsic structural properties of a deep, well-drained soil in southeastern Nigeria are assessed. Treatments are RHD-amended, CD-amended and “unamended”, each plot being either surface-mulched or left bare, with the unamended-bare plots as control. Amendments and mulch were applied at 20 t/ha equivalents. Their effects on the soil’s infiltration characteristics 7 months later were not evident; however, there was a tendency for differences: CD-amended ≥ RHD-amended ≥ unamended and surface-mulched ≥ bare-surface. By contrast, saturated hydraulic conductivity (Ks ) differed thus: CD-mulched ≥ unamended-mulched > the rest. Similar values were recorded for Ks (50.89 cm/h) and final infiltration rate (50.74 cm/h) only under CD-amended plots, which also showed the highest values (43.50 cm/h) for transmissivity of the soil. Soil penetrometer resistance was lowest in CD-amended plots (113.44 kPa) and highest in unamended plots (166.78 kPa). Topsoil addition of cattle dung and surface mulching could increase infiltration, though marginally, and permeability of coarse-textured tropical soils beyond the season of their application when their effects on soil structure have almost waned.
Keywords:steady-state infiltration  soil penetrometer resistance  soil bulk density  saturated hydraulic conductivity  transmissivity  coarse-textured tropical soil
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号