首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional lithospheric modelling at NORSAR: linearity of the method and amplitude variations from the anomalies
Authors:C J Thomson  D Gubbins
Institution:Department of Earth Sciences, Bullard Laboratories, Madingley Rise, Madingley Road, Cambridge CB3 OEZ
Abstract:Summary. A modification of the Aid et al . technique for three-dimensional lithospheric modelling is used to find smoothly varying models for the P -wave velocity structure beneath NORSAR. The method includes ray tracing and calculation of geometrical spreading in the anomalies. The results of linear inversion of the travel-time data compare well with those of previous investigators. The assumption of linearity, which removes the need to ray trace through the anomalies, is tested with iterative solutions for both synthetic and real data. A model with an rms velocity perturbation of 3 per cent, extending to 120 km depth, is found to be reasonably linear. In fact the procedure leads to two models which satisfy the same amount of the real data but which differ by far more than the standard errors. However, these differences are not significant once the imperfect resolution is accounted for by using the total estimation error of the stochastic inverse.
The depth of major anomalies appears to be greater than the array diameter and is therefore not well constrained. Comparing the geometrical spreading produced by these models with the amplitude variations observed at the array indicates that structure deeper than 120 km but shallower than 200 km makes an important contribution to the observations. None of the models used can produce variations as large as those in the amplitude data. For deep, essentially two-dimensional, anomalies the fit to these data is much better for sources to the NE of the array than for sources in other quadrants.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号