首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The low-pressure partial-melting behaviour of natural boron-bearing metapelites from the Mt. Stafford area,central Australia
Authors:Email author" target="_blank">Esmé?M?SpicerEmail author  Gary?Stevens  Ian?S?Buick
Institution:(1) Geology Department, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa;(2) Department of Earth Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia;(3) Present address: School of Geosciences, Monash University, Melbourne, Victoria, 3800, Australia
Abstract:This study has examined the ~300 MPa partial melting behaviour of four metapelites collected from the highest grade rocks occurring below the anatectic zone of the Mt. Stafford area, Arunta Inlier, central Australia. In this area, metasediments are interpreted to have undergone partial melting within the andalusite stability field; possibly as a result of a lowering of the metapelite solidus by the presence of boron in the rocks. Two of the samples were two mica metapelites (MTS70 and MTS71). These both contained significant quantities of tourmaline and were thus boron enriched. The other two samples are biotite metapelites. One of these rocks contains only a trace of tourmaline (MTS8) and the other is tourmaline free (MTS7). Despite expectations that muscovite in the two mica samples would break down via a subsolidus reaction, muscovite was stable to above 750°C due to the incorporation of Ti, phengitic and possibly F components into its structure. Between 750 and 800°C, muscovite melted out completely via a coupled muscovite + biotite fluid-absent incongruent reaction. Tourmaline was partially consumed in this reaction, with the elbaitic component being preferentially consumed. In the most mica-rich sample this reaction produced ~60% melt at 800°C. In the biotite metapelites, biotite melting began at a temperature below 800°C and was accompanied by very modest melt production at this low temperature. In contrast to the two mica metapelites, the main pulse of melt production in these samples occurred at a temperature between 850 and 950°C. In both these samples biotite + melt coexisted over a temperature range in excess of 150°C, and in MTS8, biotite was still in the run products at 950°C. The very refractory nature of these evolved biotite compositions is most likely a consequence of both the presence of a Ti buffering phase in the assemblage (ilmenite) and the essentially plagioclase-free nature of the starting compositions. Under the fluid-absent conditions of this study, tourmaline is clearly a reactant in the partial melting process, but does not appear to shift the fluid-absent incongruent melting reactions markedly. In the tourmaline-rich two mica metapelites, tourmaline only disappears from the run products at a temperature above 850°C, where it coexisted with a substantial melt proportion. This appears to coincide with the point of maximum boron concentration in the melts.
Contact InformationEsmé M. SpicerEmail:
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号