首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Early Crystallized Titanomagnetite from Evolved Magmas and Magma Recharge in the Mesoproterozoic Zhuqing Oxide-Bearing Gabbroic Intrusions, Sichuan, SW China
作者姓名:FAN Hongpeng  ZHU Weiguang
摘    要:The ca. 1.5 Ga mafic intrusions in the Zhuqing area, predominantly composed of alkaline gabbroic rocks in the Kangdian region of SW China, occur as dykes or irregular small intrusions hosting Fe–Ti–V mineralization. All of the intrusions that intrude the dolomite or shales of the Mesoproterozoic Heishan Formation of the Huili Group are composed of three cyclic units from the base upward: a marginal cyclic unit, a lower cyclic unit and an upper cyclic unit. The Fe–Ti–V oxide ore bodies are hosted in the lower and upper cyclic units. The textural relationships between minerals in the intrusions suggest that titanomagnetite formed earlier than silicate grains because euhedral magnetite and ilmenite grains were enclosed in clinopyroxene and plagioclase. Both the magnetitess–ilmenitess intergrowths due to subsolidus oxidation–exsolutions and the relative higher V distribution coefficient between magnetite and silicate melts in the gabbros from the Zhuqing area are different from those of other typical Fe–Ti bearing mafic rocks, suggesting that the oxygen fugacity was low in the gabbric rocks from the Zhuqing area. This finding was further confirmed by calculations based on the compositions of magnetite and ilmenite pairs. The clinopyroxene, magnetite and ilmenite in the intrusions from the Zhuqing area had considerably lower Mg O than those of other typical Fe–Ti oxide-rich complexes, suggesting that the titanomagnetite from the intrusion may have crystallized at a relatively late stage of evolution from a more evolved magma. Titanomagnetite first fractionally crystallized and subsequently settled in the lower parts of the magma chamber, where it concentrated and formed Fe–Ti–V oxide ore layers at the bases of the lower and upper cycles. Moreover, the occurrence of multiple Fe-Ti oxide layers alternating with Fe-Ti oxide-bearing silicate layers suggests that multiple pulses of magma were involved in the formation of the intrusions and related Fe-Ti-V oxide deposits in the Zhuqing area.

关 键 词:Fe–Ti  oxide    mineral  chemistry    patrogenesis    Mesoproterozoic  Zhuqing  oxide  ore  deposits    Kangdian  region    SW  china    East  margin  of  Tibetan  Plateau    Proto-Tethys
收稿时间:2010/7/15 0:00:00

Early Crystallized Titanomagnetite from Evolved Magmas and Magma Recharge in the Mesoproterozoic Zhuqing Oxide-Bearing Gabbroic Intrusions, Sichuan, SW China
Authors:FAN Hongpeng and ZHU Weiguang
Institution:State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,Chinese Academy of Sciences, Guiyang 550081, Guizhou, China and State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,Chinese Academy of Sciences, Guiyang 550081, Guizhou, China
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号