首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mineralogy and geochemistry of biotites from Proterozoic granitoids of western Arunachal Himalaya: Evidence of bimodal granitogeny and tectonic affinity
Authors:Santosh Kumar  Manjari Pathak
Institution:1.Department of Geology,Kumaun University,Nainital,India
Abstract:Felsic magmatic rocks in Kameng corridor of western Arunachal Himalaya are represented by extensively exposed Palaeoproterozoic porphyritic muscovite-biotite granite (GGn) of the Bomdila Group and small stock-like Mesoproterozoic hornblende-biotite granite (HBG) of the Salari Group. Mineralogy and chemical composition of biotites from GGn and HBG have been utilized to understand the nature and tectonic environment of their parental felsic melts. Biotites in GGn (FeOt/MgO=3.1–4.6) are Fe-biotites and have shown affinity with primary biotites co-precipitating with muscovite in a peraluminous (S-type) felsic melt of syn-collisional tectonic environment. Biotites in HBG (FeOt/MgO=1.3–2.2) are transitional between Fe and Mg biotites evolved from Fayalite-Magnetite-Quartz (FMQ) to Nickel-Nickel Oxide (NNO) buffers and are related to primary biotites co-existing with amphibole and other ferromagnesian minerals in a calc-alkaline metaluminous (I-type) felsic melt mostly formed in a subduction setting. Both GGn and HBG biotites exhibit Mg⇌Fe substitution, which is more pronounced in HBG biotites. GGn biotites exhibit 2Al⇌3Fe2+ substitution as expected in peraluminous melt, whereas 3Mg⇌2Al substitution normally expected to operate in metaluminous melt is less pronounced in HBG biotites. GGn biotites are markedly enriched in siderophyllite, and depleted in phlogopite components as compared to HBG biotites, which point to diverse genetic conditions. HBG biotites indicate oxidizing environment of the felsic melt unlike the reducing nature of the porphyritic granite (GGn).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号