首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Younger and older zircons from rocks of the oceanic lithosphere in the Central Atlantic and their geotectonic implications
Authors:S G Skolotnev  V E Bel’tenev  E N Lepekhina  I S Ipat’eva
Institution:1.Geological Institute,Russian Academy of Sciences,Moscow,Russia;2.Polar Marine Geosurvey Expedition,Lomonosov,Russia;3.Russian Geological Research Institute,St. Petersburg,Russia
Abstract:Local U-Pb dating of zircons separated from various rocks in the crest zone of the Mid-Atlantic Ridge (MAR) and Carter Seamount (Sierra Leone Rise) is performed. Younger zircons formed in situ in combination with older xenogenic zircons are revealed in enriched basalts, alkaline volcanic rocks, gabbroic rocks, and plagiogranites. Only older zircons are found in depleted basalts and peridotites. Older zircons are ubiquitous in the young oceanic lithosphere of the Central Atlantic. The age of the younger zircons from the crest zone of the MAR ranges from 0.38 to 11.26 Ma and progressively increases receding from the axial zone of the ridge. This fact provides additional evidence for spreading of the oceanic floor. The rate of half-spreading calculated from the age of the studied zircons is close to the rate of half-spreading estimated from magnetic anomalies. The age of the younger zircons from Carter Seamount (58 Ma) corresponds to the age of the volcanic edifice. Older zircons make up an age series from 53 to 3200 Ma. Clusters of zircons differing in age reveal quasiperiodicity of about 200 Ma, which approximately corresponds to the global tectonic epochs in the geological evolution of the Earth. Several age groups of older zircons combine grains close in morphology and geochemistry: (1) Neoproterozoic and Phanerozoic (53–700 Ma) prismatic grains with slightly resorbed faces, well-preserved or translucent oscillatory zoning, and geochemical features inherent to magmatic zircons; (2) prismatic grains dated at 1811 Ma with resorbed faces and edges, fragmentary or translucent zoning, and geochemical features inherent to magmatic zircons; (3) ovoid and highly resorbed prismatic grains with chaotic internal structure and metamorphic geochemical parameters; the peak of their ages is 1880 Ma. The performed study indicates that older xenogenic zircons from young rocks in the crest zone of the MAR were captured by melt or incorporated into refractory restite probably in the sublithospheric mantle at the level of magma generation in the asthenosphere. It is suggested that zircons could have crystallized from the melts repeatedly migrating through the asthenosphere during geological history or were entrapped by the asthenosphere together with blocks of disintegrated and delaminated continental lithosphere in the process of breakup of the continents older than Gondwana. The variability in the age of older zircons even within individual samples may be regarded as evidence for active stirring of matter as a result of periodically arising and destroyed within-asthenospheric convective flows varying in orientation and scale.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号