首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nodular chert from the Arbuckle Group, Slick Hills, SW Oklahoma: a combined field, petrographic and isotopic study
Authors:GUOQIU GAO  LYNTON S LAND
Institution:Department of Geological Sciences, University of Texas at Austin, Austin, TX78713, USA
Abstract:Nodular chert from the middle and upper Arbuckle Group (Early Ordovician) in the Slick Hills, SW Oklahoma, was formed by selective replacement of grainstones, burrow fillings, algal structures, and evaporite nodules. Chert nodules are dominantly microquartz with minor fibrous quartz (both quartzine and chalcedony), megaquartz, and microflamboyant quartz. Lepisphere textures of an opal-CT precursor are preserved in many (especially in finely-crystalline) chert nodules. The δ18O values of microquartz chert range from +23.4 to + 28.80/00 (SMOW), significantly lower than those of Cenozoic and Mesozoic microquartz chert formed both in the deep sea and from near-surface sea water. The δ18O values of chert decrease with increasing quartz crystal size. Silicification in the Arbuckle Group occurred during early diagenesis, with the timing constrained by the relative temporal relationships among silicification, burial compaction, and early dolomite stabilization. Silica for initial chert nucleation may have been derived from both dissolution of sponge spicules and silica-enriched sea water. Chert nucleation appears to have been controlled by the porosity, permeability, and organic matter content of precursor sediments. This conclusion is based on the fact that chert selectively replaced both porous grainstones and burrows and algal structures enriched in organic matter. Growth of chert probably occurred by a maturation process from opal-A(?), to opal-CT, to quartz, as indicated by the presence of opal-CT precursor textures in many chert nodules. Although field and petrographic evidence argues for an early marine origin for chert in the Arbuckle Group, the light δ18O values are inconsistent with this origin. Meteoric resetting of the δ18O values of the chert during exposure of the carbonate platform best explains the light δ18O values because: (i) the δ18O values of chert nodules decrease with decreasing δ18O values of host limestones, and (ii) chert nodules from early dolomite, which underwent more extensive meteoric modification than associated limestones, have lighter δ18O values than chert nodules from limestones. Increasing recrystallization of chert nodules by meteoric water resulted in progressive 18O depletion and (quartz) crystal enlargement.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号