首页 | 本学科首页   官方微博 | 高级检索  
     


Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project
Authors:Fulai Liu   Zhiqin Xu   Ikuo Katayama   Jingsui Yang   Shigenori Maruyama  J. G. Liou
Affiliation:

a Institute of Geology, Chinese Academy of Geological Sciences, Baiwanzhuang Road 26, Beijing 100037, China

b Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan

c Department of Geological Environmental Sciences, Stanford University, Stanford, CA 94305, USA

Abstract:The pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project (CCSD), with depth of 432 m, is located in the Donghai area in the southwestern Sulu terrane. The core samples are mainly comprised of paragneiss, orthogneiss and ultramafic rock with minor intercalated layers of eclogite and phengite-bearing kyanite quartzite. All analyzed paragneiss and orthogneiss samples were overprinted on amphibolite facies retrograde metamorphism. Coesite and coesite-bearing ultrahigh-pressure (UHP) mineral assemblages were identified by Raman spectroscopy and electron microprobe analysis as inclusions in zircons separated from paragneiss, eclogite and phengite-bearing kyanite quartzite samples. In the paragneiss samples, UHP mineral inclusion assemblages mainly consist of Coe+Omp+Grt+Phe, Coe+Jd+Phe+Ap preserved in the mantles (M) and rims (R) of zircons. These UHP mineral inclusion assemblages yield temperatures of 814–852 °C and pressures of ≥28 kbar, presenting the PT condition of UHP peak metamorphism of these country rocks. According to the mineral inclusions and cathodoluminescence images of zircons, the orthogneisses can be divided into two types: UHP (OG1) and non-UHP (OG2). In OG1 orthogneisses, low-pressure mineral inclusion assemblage, mainly consisting of Qtz+Phe+Ab+Ksp+Ap, were identified in zircon cores (C), while coesite or coesite-bearing UHP mineral inclusions were identified in the mantles (M) and rims (R) of the same zircons. These features suggest that the OG1 orthogneisses, together with the paragneisses, phengite-bearing kyanite quartzite and eclogite experienced widespread UHP metamorphism in the Sulu terrane. However, in the zircons of OG2 orthogneiss samples, no UHP mineral inclusions were found. Inclusions mainly comprised Qtz+Phe+Ap and were identified in cores (C), mantles (M) and rims (R) of OG2 zircons; the cathdoluminescence images of all analyzed zircons showed clear zonings from cores to rims. These features indicate that the OG2 orthogneisses in pre-pilot drillhole CCSD-PP1 did not experience UHP metamorphism. Therefore, we should not rule out the possibility that some orthogneisses in Sulu terrane might represent relatively low-pressure granitic intrusives emplaced after the UHP event.
Keywords:Mineral inclusions   Zircons   Paragneiss   Orthogneiss   Pre-pilot drillhole CCSD-PP1
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号