首页 | 本学科首页   官方微博 | 高级检索  
     


S and Pb Isotopic Constraints on the Relationship between the Linong Granodiorite and the Yangla Copper Deposit,Yunnan, China
Authors:YANG Xi'an  LIU Jiajun  HAN Siyu  WANG Huan  CHEN Siyao
Abstract:The Yangla copper deposit, located in western Yunnan Province, China, is a typical giant, newly started mining copper deposit with an estimated Cu reserves of about 1,200,000 tons. The deposit is spatially and temporally associated with the Linong granodiorite, which is rich in SiO2 (SiO2=58.25 wt%–69.84 wt%) and alkalis (Na2O+K2O=5.98 wt%–8.34 wt%), indicating an association with shoshonitic series to high‐K calc‐alkaline series granites, and shows low contents of TiO2 (0.35 wt%–0.48 wt%), MgO (1.51 wt%–1.72 wt%), and Al2O3 (13.38 wt%–19.75 wt%). The δ34S values of sulfides of the main ore stage from copper ores vary range from −4.2‰ to −0.9‰, indicating a much greater contribution from the mantle to the ore‐forming fluids. The δ34S values of the late ore stage is −9.8‰, indicating enrichment of biogenic sulfur which may derive from the crustal hydrothermal fluid. The 208pb/204pbj 207pb/204pb and 206pb/204pb of sulfides of the main ore stage from copper ores range within 38.66–38.73, 15.71–15.74 and 18.35–19.04, respectively, implying that the Pb was derived from the mantle, with the crustal component, probably representing mixtures of mantle lead and crustal lead. Sulfide of the late ore stage in their Pb isotopic composition, 208Pb/204Pb= 38.69, 207Pb/204Pb=15.70, 206Pb/204Pb=18.35, implying that the Pb was derived from the crust. The Linong granodiorite is syncollisional, produced by partial melting of thickened lower crust, which was triggered by the westward subduction of the Jinshajiang Oceanic plate. During a transition in geodynamic setting from collision‐related compression to extension, gently dipping ductile shear zones (related to subduction) were transformed to brittle shear zones, consisting of a series of thrust faults in the Jinshajiang tectonic belt. The tensional thrust faults would have been a favorable environment for ore‐forming fluids. The ascending magma provided a channel for the ore‐forming fluid from the mantle wedge. After the magma arrived at the base of the early‐stage Linong granodiorite, the platy granodiorite at the base of the body would have shielded the late‐stage magma from the fluid. The magma would have cooled slowly, and some of the ore‐forming fluid in the magma would have entered the gently dipping thrust faults near the Linong granodiorite, resulting in mineralization.
Keywords:granodiorite  isotopic compositions  Yangla copper deposit
点击此处可从《《地质学报》英文版》浏览原始摘要信息
点击此处可从《《地质学报》英文版》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号