首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Overall temporal synchrotron emissions from relativistic jets: adiabatic and radiative breaks
Authors:ZhuoLi  Z GDai  TLu
Institution:Department of Astronomy, Nanjing University, Nanjing 210093, China
Abstract:We discuss the afterglow emission from a relativistic jet that is initially in the radiative regime, in which the accelerated electrons are fast-cooling. We note that such a 'semiradiative' jet decelerates faster than an adiabatic jet does. We also take into account the effect of strong inverse-Compton scattering on the cooling frequency in the synchrotron component and therefore on the light-curve decay index. We find that there are two kinds of light-curve break for the jet effect. The first is an 'adiabatic break', if the electrons become slow-cooling before the jet enters a spreading phase, and the second is a 'radiative break', which appears in the contrary case. We then show how a relativistic jet evolves dynamically and derive the overall temporal synchrotron emission in both cases, focusing on the change in the light-curve decay index around the break time. Finally, in view of our results, we rule out two cases for relativistic jets which do not account for the observed light-curve breaks in a few afterglows : (i) an adiabatic jet with strong Compton cooling  ( Y >1)  and with the cooling frequency ν c locating in the observed energy range; (ii) a radiative jet with a significant fraction of total energy occupied by electrons  ( ε e ∼1)  .
Keywords:radiation mechanisms: non-thermal  gamma-rays: bursts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号