首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen and oxygen isotopic compositions of waters from fumaroles at Kilauea summit,Hawaii
Authors:T. K. Hinkley  J. E. Quick  R. T. Gregory  T. M. Gerlach
Affiliation:(1) Federal Center, US Geological Survey, ms 903, Box 25046, 80225 Denver, CO, USA;(2) Department of Geological Sciences, Southern Methodist University, 75275 Dallas, TX, USA;(3) Cascades Volcano Observatory, US Geological Survey, 5400 MacArthur Boulevard, 98661 Vancouver, WA, USA
Abstract:Condensate samples were collected in 1992 from a high-temperature (300° C) fumarole on the floor of the Halemaumau Pit Crater at Kilauea. The emergence about two years earlier of such a hot fumarole was unprecedented at such a central location at Kilauea. The condensates have hydrogen and oxygen isotopic compositions which indicate that the waters emitted by the fumarole are composed largely of meteoric water, that any magmatic water component must be minor, and that the precipitation that was the original source to the fumarole fell on a recharge area on the slopes of Mauna Loa Volcano to the west. However, the fumarole has no tritium, indicating that it taps a source of water that has been isolated from atmospheric water for at least 40 years. It is noteworthy, considering the unstable tectonic environment and abundant local rainfall of the Kilauea and Mauna Loa regions, that waters which are sources to the hot fumarole remain uncontaminated from atmospheric sources over such long times and long transport distances. As for the common, boiling point fumaroles of the Kilauea summit region, their 18O, D and tritium concentrations indicate that they are dominated by recycling of present day meteoric water. Though the waters of both hot and boiling point fumaroles have dominantly meteoric sources, they seem to be from separate hydrological regimes. Large concentrations of halogens and sulfur species in the condensates, together with the location at the center of the Kilauea summit region and the high temperature, initially suggested that much of the total mass of the emissions of the hot fumarole, including the H2O, might have come directly from a magma body. The results of the present study indicate that it is unreliable to infer a magmatic origin of volcanic waters based solely on halogen or sulfur contents, or other aspects of chemical composition of total condensates.
Keywords:Isotopic compositions  Fumaroles  Kilauea  Hawaii
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号