首页 | 本学科首页   官方微博 | 高级检索  
     


On a class of non-stationary, compactly supported spatial covariance functions
Authors:J. Mateu  G. Fernández-Avilés  J. M. Montero
Affiliation:1. Department of Mathematics, University Jaume I, Campus Riu Sec, 12071, Castellon, Spain
2. Department of Statistics, University of Castilla-La-Mancha, 45071, Toledo, Spain
Abstract:Globally supported covariance functions are generally associated with dense covariance matrices, meaning severe numerical problems in solution feasibility. These problems can be alleviated by considering methods yielding sparse covariance matrices. Indeed, having many zero entries in the covariance matrix can both greatly reduce computer storage requirements and the number of floating point operations needed in computation. Compactly supported covariance functions considerably reduce the computational burden of kriging, and allow the use of computationally efficient sparse matrix techniques, thus becoming a core aspect in spatial prediction when dealing with massive data sets. However, most of the work done in the context of compactly supported covariance functions has been carried out in the stationary context. This assumption is not generally met in practical and real problems, and there has been a growing recognition of the need for non-stationary spatial covariance functions in a variety of disciplines. In this paper we present a new class of non-stationary, compactly supported spatial covariance functions, which adapts a class of convolution-based flexible models to non-stationary situations. Some particular examples, computational issues, and connections with existing models are considered.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号