摘 要: | 随着精密定位技术的发展,高频GPS已能够精确记录地表位移数据,研究高频GPS能为地震预警工作做出一定补充.针对目前地震预警中单站预警误报率高的问题引入深度学习技术,利用长短期记忆网络(LSTM)联合周边区域台站对单台站进行预警以达到减少误报的目的.首先通过对新西兰南部地区1 Hz高频GPS数据进行解算得到多个台站无震时间序列,再利用该数据训练网络得到融合区域特征的高精度模型.该模型可以对无震时间序列进行预测并动态制定阈值区间,当实际观测值超出置信区间则判定异常.通过与传统短时窗平均/长时窗平均算法(STA/LTA)及未融合区域特征的单站模型进行对比,结果表明:融合区域特征的单站模型可有效减少误报,在多个台站的无震长序列上较传统方法表现优异,具有一定的应用价值.
|