首页 | 本学科首页   官方微博 | 高级检索  
     

中国区域3种数值模式的地面气象要素预报初步评估
引用本文:岳艳霞,任芝花,刘娜,石岩. 中国区域3种数值模式的地面气象要素预报初步评估[J]. 气候与环境研究, 2022, 27(2): 299-314. DOI: 10.3878/j.issn.1006-9585.2021.20064
作者姓名:岳艳霞  任芝花  刘娜  石岩
作者单位:石家庄市气象局,石家庄050081;国家气象信息中心,北京100081
基金项目:国家自然科学基金重大研究计划项目91744209
摘    要:ECMWF 和 GRAPES(Global/Regional Assimilation and Prediction System)预报产品是国内目前主要的应用服务产品.为了了解ECMWF和GRAPES预报产品的性能,使用户在实际应用中,根据需求可选择性地应用上述预报产品,本文利用中国气象局2421个国家级自动站和81...

关 键 词:数值模式  地面气象要素  评估
收稿时间:2020-05-27

Preliminary Evaluation of Surface Meteorological Elements Prediction Using Three Numerical Models in China
Yanxia YUE,Zhihua REN,Na LIU,Yan SHI. Preliminary Evaluation of Surface Meteorological Elements Prediction Using Three Numerical Models in China[J]. Climatic and Environmental Research, 2022, 27(2): 299-314. DOI: 10.3878/j.issn.1006-9585.2021.20064
Authors:Yanxia YUE  Zhihua REN  Na LIU  Yan SHI
Affiliation:1.Shijiazhuang Meteorological Service, Shijiazhuang 0500812.National Meteorological Information Center, China Meteorological Administrator, Beijing 100081
Abstract:ECMWF and GRAPES (Global/Regional Assimilation and Prediction System) forecast products are the main service products in China. To understand their performance and enable users to selectively apply these products according to their needs in practical application, this study evaluates the applicability of air temperature, ground temperature, wind speed, and relative humidity from ECMWF (C1D), GRAPES_MESO (Meso), and GRAPES_GFS (Gfs) in July 2017, November 2017, January 2018, and April 2018 and these models are compared with automatic observations from 2421 national stations and 8155 backbone stations reported by the Chinese Meteorological Administration. Results show that systematic errors are observed for the three numerical models compared with the in situ observations. The ground temperature prediction is easy to underestimate, and the wind speed forecast is easy to overestimate. There are obvious regional, seasonal, and diurnal variations in the forecasting capability of the three numerical models, which is evidently lower in the Tibet area than that in other areas. The forecasting capability for the air temperature and wind speed is the worst in spring, while that for humidity is the best in summer using the three models. For the analyzed meteorological variables, the correlation coefficient of the wind speed is the lowest, that of air temperature is the highest, and the accuracy of humidity prediction is the lowest. The accuracy of ground temperature prediction using Meso is the highest, and the accuracy of wind speed prediction using Gfs and C1D is the highest.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《气候与环境研究》浏览原始摘要信息
点击此处可从《气候与环境研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号