首页 | 本学科首页   官方微博 | 高级检索  
     

基于波数域梯度场分解的多尺度波形反演方法
引用本文:李振春, 王自颖, 黄建平, 崔超. 2022. 基于波数域梯度场分解的多尺度波形反演方法. 地球物理学报, 65(7): 2693-2703, doi: 10.6038/cjg2022P0508
作者姓名:李振春  王自颖  黄建平  崔超
作者单位:中国石油大学(华东)地球科学与技术学院,青岛 266580;海洋国家实验室海洋矿产资源评价与探测技术功能实验室,青岛 266071
基金项目:国家重点研发计划项目(2019YFC0605503);;国家自然科学基金(42074133,41922028,41874149)联合资助;
摘    要:

全波形反演是一种建立高精度速度模型的有力工具,是偏移模式和层析模式的联合.然而,当初始模型较差、数据缺失低频成分和大偏移距数据缺失时,常规波形反演的层析成分更新较弱.因此,反演过程以偏移模式为主,容易导致反演快速陷入局部极小值.本文发展了基于波数域梯度场分解的多尺度波形反演方法(WGDFWI),从梯度场中分离出层析成分,在反演的初期主要依赖层析分量更新背景速度场,为常规全波形反演建立良好的初始模型.首先,基于一种高效的隐式波场分离方法,将梯度场分解为层析成分和偏移成分.然后在层析梯度上应用二维波数域滤波器,以缓解偏移成分泄露的问题,并利用多尺度反演策略,增强反演的稳定性.利用双层模型和Marmousi模型进行试算的结果表明,该方法可以有效重构背景速度模型,为常规波形反演提供良好的初始模型,有效提高反演精度.



关 键 词:全波形反演  梯度分解  多尺度  波数域
收稿时间:2021-07-17
修稿时间:2022-03-21

Multi-scale full waveform inversion based ongradient decomposition in wavenumber domain
LI ZhenChun, WANG ZiYing, HUANG JianPing, CUI Chao. 2022. Multi-scale full waveform inversion based ongradient decomposition in wavenumber domain. Chinese Journal of Geophysics (in Chinese), 65(7): 2693-2703, doi: 10.6038/cjg2022P0508
Authors:LI ZhenChun  WANG ZiYing  HUANG JianPing  CUI Chao
Affiliation:1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China; 2. Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:Full Waveform Inversion (FWI) is a powerful tool to reconstruct velocity model with high resolution. It is the combination of tomography mode and migration mode, however, the update of tomographic component is relatively weak, compared to that of migration component. When the initial velocity model is far away from the true velocity model, or the data lack low-frequency and large-offset information, FWI will be dominated by migration mode updating high-wavenumber information of the velocity model. In this way, the inversion will fall into a local minimum, generating a poor inversion result. To prevent the reconstructed model from being trapped into a local minimum, we develop a multi-scale full waveform inversion method based on gradient decomposition in wavenumber domain. Firstly, we decompose the FWI gradient into two parts, tomographic component and migration component, based on an implicit wavefield decomposition method. The tomographic component is extracted from FWI gradient. With a 2D filter in wavenumber domain, the migration component leakage can be mitigated, and the high-wavenumber noise can be effectively removed from tomographic gradient. We also use a multi-scale strategy to improve inversion stability. The tomographic updates are enhanced during the early stages of inversion to invert for a background velocity model, which will be used as the initial model for conventional FWI. Numerical results of two-layer model and Marmousi model tests demonstrate the effectiveness of multi-scale full waveform inversion based on gradient decomposition in wavenumber domain. The proposed method enhances the low-wavenumber updates and provides a more accurate initial model for subsequent FWI. The final inverted velocity model is more accurate than the conventional FWI result.
Keywords:Full Waveform Inversion (FWI)  Gradient decomposition  Multiple scale  Wavenumber domain
本文献已被 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号