首页 | 本学科首页   官方微博 | 高级检索  
     

利用时序InSAR技术反演邯郸平原区地表形变与含水层参数
引用本文:白林, 李振洪, 宋莎, 刘东. 2022. 利用时序InSAR技术反演邯郸平原区地表形变与含水层参数. 地球物理学报, 65(9): 3351-3362, doi: 10.6038/cjg2022P0845
作者姓名:白林  李振洪  宋莎  刘东
作者单位:1. 长安大学地质工程与测绘学院, 西安 710054; 2. 西部矿产资源与地质工程教育部重点实验室, 西安 710054; 3. 长安大学地学与卫星大数据研究中心, 西安 710054; 4. 机械工业勘察设计研究院有限公司, 西安 710043
基金项目:国家重点研发计划项目(2019YFC1509201);;国家自然科学基金项目(42004005);;陕西省自然科学基础研究计划资助项目(2020JQ-357);;长安大学中央高校基本科研业务费专项资金项目(300102262205,300102262902)资助;
摘    要:

邯郸平原区承压地下水长期处于严重超采状态, 导致大面积地面沉降, 直接威胁到该地区重大基础设施安全.因此, 查明地面沉降时空演变特征, 厘清承压地下水变化与地面沉降的耦合关系, 对预防和治理地面沉降地质灾害具有重要意义.本文利用Sentinel-1A数据进行时间序列分析, 获取了2015—2019年邯郸平原区地表形变时空分布结果, 并结合水头数据分析了含水系统对水头变化的不同响应.利用谐波函数分离了地表形变及水头变化的季节性变化, 并用其估算了邯郸平原区空间差异变化的弹性骨架释水系数; 基于顾及弱透水层延迟排水的一维水头变化-形变模型, 反演了非弹性骨架释水系数和时间常数.结果表明: (1)邯郸平原区以沉降为主, 最大沉降速率可达14 cm·a-1; 通过与水头数据对比发现该地区地面沉降主要是由承压含水层水头下降及弱透水层的延迟排水引起.(2)水头的季节性变化引起了明显的季节性形变, 沉降区季节性形变幅度可达25 mm, 峰值时间为1—3月.(3)邯郸平原区弹性骨架释水系数介于1.51×10-3~4.05×10-3之间, 与抽水试验结果较为相符; 非弹性骨架释水系数为3.62×10-2~4.57×10-2, 时间常数为0.47~0.77 a.本研究表明时序InSAR技术在含水层参数估算, 地下水超采相关的地质灾害监测方面有良好的应用潜力.



关 键 词:河北邯郸   时序InSAR   地表形变   承压地下水   骨架释水系数
收稿时间:2021-11-11
修稿时间:2022-03-22

Estimation of the land deformation and aquifer parameters in the Handan plain using multi-temporal InSAR technology
BAI Lin, LI ZhenHong, SONG Sha, LIU Dong. 2022. Estimation of the land deformation and aquifer parameters in the Handan plain using multi-temporal InSAR technology. Chinese Journal of Geophysics (in Chinese), 65(9): 3351-3362, doi: 10.6038/cjg2022P0845
Authors:BAI Lin  LI ZhenHong  SONG Sha  LIU Dong
Affiliation:1. School of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China; 2. Key Laboratory of Western China's Mineral Resource and Geological Engineering, Ministry of Education, Xi'an 710054, China; 3. Big Data Center for Geosciences and Satellites, Chang'an University, Xi'an 710054, China; 4. China Jikan Research Institute of Engineering Investigation and Design Co., Ltd., Xi'an 710043, China
Abstract:The long-term overexploitation of confined groundwater in the Handan plain leads to regional subsidence, threatening major infrastructure security. Thus, it is vitally important to investigate the spatiotemporal characteristics of land subsidence and clarify the coupling of deep groundwater change and land subsidence for land subsidence disasters prevention and control. In this study, we apply the multi-temporal InSAR method to detect the spatiotemporal variations of land deformation in the Handan plain with Sentinel-1A data from 2015 to 2019, and analyze the aquifer system response to hydraulic head changes. Seasonal signals in land deformation and head data are isolated by harmonic function to derive the spatially heterogeneous elastic skeletal storativity. Moreover, according to the one-dimensional head change-delayed land deformation model, we estimate the inelastic skeletal storativity and time constant. The results indicate that: (1) The Handan plain is dominated by land subsidence with the maximum rate of 14 cm·a-1. Comparison between the subsidence and head change suggests that the subsidence is mainly caused by the head drop in aquifers and delayed drainage of water from aquitards. (2) The seasonal fluctuation in head leads to the obviously seasonal deformation, the amplitude of seasonal deformation can reach up to 25 mm, and the peak time ranges from January to March. (3) The values of elastic skeletal storativity range from 1.51×10-3~4.05×10-3 that agree well with those derived from pumping tests, the inelastic skeletal storativity is 3.62×10-2~4.57×10-2 and the time constant is 0.47~0.77 years. This study demonstrates the potential of using multi-temporal InSAR technology to characterize aquifer parameters and monitor the geological disasters caused by groundwater overexploitation.
Keywords:Hebei Handan  Multi-temporal InSAR  Land deformation  Confined groundwater  Skeletal storativity
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号