首页 | 本学科首页   官方微博 | 高级检索  
     

深度卷积网络支持下的遥感影像井盖部件检测
引用本文:杨梦圆,刘伟,尹鹏程,谢梦. 深度卷积网络支持下的遥感影像井盖部件检测[J]. 测绘通报, 2019, 0(8): 78-81,87. DOI: 10.13474/j.cnki.11-2246.2019.0256
作者姓名:杨梦圆  刘伟  尹鹏程  谢梦
作者单位:江苏师范大学地理测绘与城乡规划学院,江苏徐州,221116;江苏师范大学地理测绘与城乡规划学院,江苏徐州221116;资源与环境信息系统国家重点实验室,北京100101;徐州市国土资源局,江苏徐州,221006
基金项目:国家自然科学基金(41601405);江苏省国土资源科技项目(2018054);徐州市国土资源科技项目(XZGTKJ2018001);江苏省研究生科研与实践创新计划项目(KYCX18_2163)
摘    要:数字城市管理发展中城市部件调查是一项重要的任务,但是城市井盖部件信息获取存在人工调绘效率低、精度难以保证等缺陷,影响城市井盖部件的及时更新。因此本文利用深度卷积神经网络模型,通过小卷积核、尾部裁剪和保持输入大小等改进边缘检测网络(HED)并增加两层卷积运算提取目标,提出HED-C网络模型,实现了端到端的井盖部件目标检测。试验结果表明,利用HED-C模型井盖部件召回率可达96.58%,查准率可达97.93%,相较Faster R-CNN、YOLO和SSD网络模型,综合性能有了较大提高。

关 键 词:井盖  遥感图像  目标检测  深度卷积网络  端到端
收稿时间:2018-12-24

Manhole cover object detection in remote sensing imagery with deep convolutional neural networks
YANG Mengyuan,LIU Wei,YIN Pengcheng,XIE Meng. Manhole cover object detection in remote sensing imagery with deep convolutional neural networks[J]. Bulletin of Surveying and Mapping, 2019, 0(8): 78-81,87. DOI: 10.13474/j.cnki.11-2246.2019.0256
Authors:YANG Mengyuan  LIU Wei  YIN Pengcheng  XIE Meng
Affiliation:1. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, China;2. State Key Laboratory of Resources and Environmental Information System, Beijing 100101, China;3. Bureau of Land and Resources of Xuzhou, Xuzhou 221006, China
Abstract:Urban component survey is an important task in the development of digital city management. However, the manhole cover information acquisition still has shortcomings such as low efficiency of manual surveying and high leakage rate. To address these problems, this paper proposes an effective method for detecting manhole cover objects in remote sensing images. We redesign the feature extractor by adopting VGG (visual geometry group) and HED (holistically-nested edge detection) side-output module, which can increase the variety of receptive field size. Then, the detection is performed by a multi-level convolution matching network for object detection based on fused feature maps, which combines several feature maps that enables small and densely packed manhole cover objects to produce stronger response. The results show that the proposed method is more accurate than existing methods for detecting manhole cover in remote sensing images.
Keywords:manhole cover  remote sensing images  object detection  deep convolutional neural networks  end to end  
本文献已被 万方数据 等数据库收录!
点击此处可从《测绘通报》浏览原始摘要信息
点击此处可从《测绘通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号