首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluid-Absent Melting Behavior of an F-Rich Tonalitic Gneiss at Mid-Crustal Pressures: Implications for the Generation of Anorogenic Granites
Authors:SKJERLIE  KJELL P; JOHNSTON  A DANA
Institution:Department of Geological Sciences, University of Oregon Eugene, Oregon 97403-1272
Abstract:Fluid-absent melting experiments on a biotite (20 wt.%) andhornblende (2 wt.%) bearing tonalitic gneiss were conductedat 6 kbar (900–975C), 10 kbar (875–1075C), and14 kbar (950–975C) to study melt productivity from weaklyperaluminous quartzofeldspathic metamorphic rocks. At 6 kbar,biotite dehydration–melting is completed at 975C viaincongruent melting reactions that produce orthopyroxene, twooxides, and {small tilde}25 wt.% granitic melt. At 6 kbar, hornblendedisappears at 900C, probably in reaction with biotite. At 10kbar, biotite dehydration–melting produces <10 wt.%melt up to 950C via incongruent melting reactions that produceorthopyroxene, garnet, and granitic melt. Hornblende disappearsin the satne temperature interval either by resorption or byreaction with biotite. Widespread biotite dehydration–meltingoccurs between 950 and 975C and produces orthopyroxene, twooxides, and {small tilde}20 wt.% fluorine-rich (up to 0•31wt.%) granitic melt. At 14 kbar only a trace of melt is presentat 950C, and the amounts of hornblende and biotite are virtuallythe same as in the starting material. At 975C, hornblende isgone and {small tilde}10 wt.% granitic melt is produced by meltingof both biotite and hornblende. Our results show that hornblende-bearing assemblages cannotgo through dehydration–melting on their own (althoughthey can in combination with biotite) if the Ca content in thesource rock is too low to stabilize clinopyroxene. In such rocks,hornblende will either resorb or melt by reaction with biotite.Under fluid-absent conditions, intrusion of hot, mantle-derivedmagmas into the lower crust is necessary to initiate widespreaddehydration–melting in rocks with compositions similarto those discussed here. We argue that the high thermal stabilityof biotite in our starting material is caused mainly by theincorporation of fluorine. The relatively high F content inbiotite in the starting material (0•47 wt.%) suggests thatthe rock has experienced dehydroxylation in its past. F enrichmentby a previous fluid-absent partial melting event is excludedbecause of the lack of phases such as orthopyroxene and garnetwhich would have been produced. Our experiments show that thedehydration–melting of such F-enriched biotite producesF-rich granitic liquids, with compositions within the rangeof A-types granites, and leaves behind a granulitic residuedominated by orthopyroxene, quartz, and plagioclase. This studytherefore supports the notion that A-type granites can be generatedby H2O-undersaturated melting of rocks of tonalitic composition(Creaser et al., 1991), but does not require that these sourcerocks should be residual after a previous melting event.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号