Chemical composition of Mars |
| |
Authors: | John W Morgan Edward Anders |
| |
Affiliation: | 1. Enrico Fermi Institute and Department of Chemistry. University of Chicago, Chicago, IL 60637, U.S.A.;2. Physikalisches Institut Universität Bern, Switzerland |
| |
Abstract: | The composition of Mars has been calculated from the cosmochemical model of Ganapathy and Anders (1974) which assumes that planets and chondrites underwent the same 4 fractionation processes in the solar nebula. Because elements of similar volatility stay together in these processes, only 4 index elements (U, Fe, K and Tl or Ar36) are needed to calculate the abundances of all 83 elements in the planet. The values chosen are U = 28 ppb, K = 62 ppm (based on from orbital γ-spectrometry and on thermal history calculations by Toksöz and Hsui (1978) Fe = 26.72% (from geophysical data), and Tl = 0.14 ppb (from the Ar36 and Ar40 abundances measured by Viking).The mantle of Mars is an iron-rich [Mg/(Mg + Fe) = 0.77] garnet wehrlite (ρ = 3.52?3.54 g/cm3), similar to McGetchin and Smyth's (1978) estimate but containing more Ca and Al. It is nearly identical to the bulk Moon composition of Morgan et al. (1978b). The core makes up 0.19 of the planet and contains 3.5% S—much less than estimated by other models. Volatiles have nearly Moon-like abundances, being depleted relative to the Earth by factors of 0.36 (K-group, Tcond = 600–1300 K) or 0.029 (Tl group, Tcond < 600 K). The water abundance corresponds to a 9 m layer, but could be higher by as much as a factor of 11.Comparison of model compositions for 5 differentiated planets (Earth, Venus, Mars, Moon, and eucrite parent body) suggests that volatile depletion correlates mainly with size rather than with radial distance from the Sun. However, the relatively high volatile content of shergottites and some chondrites shows that the correlation is not simple; other factors must also be involved. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|