首页 | 本学科首页   官方微博 | 高级检索  
     

神经网络法反演海水叶绿素浓度的分析
引用本文:黄海清 可贤强 王迪峰 潘德炉. 神经网络法反演海水叶绿素浓度的分析[J]. 地球信息科学学报, 2004, 6(2): 31-36,57
作者姓名:黄海清 可贤强 王迪峰 潘德炉
作者单位:国家海洋局海洋动力过程与卫星海洋学重点实验室,国家海洋局第二海洋研究所,杭州,310012;国家海洋局海洋动力过程与卫星海洋学重点实验室,国家海洋局第二海洋研究所,杭州,310012;国家海洋局海洋动力过程与卫星海洋学重点实验室,国家海洋局第二海洋研究所,杭州,310012;国家海洋局海洋动力过程与卫星海洋学重点实验室,国家海洋局第二海洋研究所,杭州,310012
基金项目:863青年基金项目2002AA639490资助。
摘    要:海洋水色遥感的最终目的之一是监测海洋初级生产力的时空变化,而反映海洋初级生产力的一个重要指标就是浮游植物中的叶绿素浓度[1]。对于海水叶绿素浓度的遥感反演研究工作至今已进行了30多年,方法主要是基于蓝-绿波段比值的经验统计法。近些年,随着水色遥感器的改进及数据处理方法的深入研究,提出了荧光高度法[2]和神经网络法[3-5]。本文基于SeaBAM(SeaWiFSBio-OpticalAlgorithmMini-Workshop)小组搜集的全球范围叶绿素浓度与离水辐射率的同步观测数据,利用神经网络方法反演海水叶绿素浓度,并将其结果与SeaBAM经验算法进行了比较及分析。

关 键 词:叶绿素浓度  神经网络  海水
收稿时间:2003-06-16;
修稿时间:2003-06-16

A Study on the Remote Sensing Inversion of Ocean Chlorophyll Concentration by Using Neural Network Method
HUANG Haiqing,HE Xianqiang,WANG Difeng,PAN Delu. A Study on the Remote Sensing Inversion of Ocean Chlorophyll Concentration by Using Neural Network Method[J]. Geo-information Science, 2004, 6(2): 31-36,57
Authors:HUANG Haiqing  HE Xianqiang  WANG Difeng  PAN Delu
Affiliation:Key Lab of Ocean Dynamic Processes and Satellite Oceanography, SIO, SOA, PRC, Hangzhou 310012, China
Abstract:One of the tasks of ocean color remote sensing is the measurement of marine primary production variation with time and space,whose important index is chlorophyll concentration of phytoplankton. The study on the inversion model of chlorophyll by remote sensing has been carried out for more than 30 years,and the main method is based on the ratio of blue and green channels. With the development of new ocean color remote sensors and new inversion methodology,the method based on fluorescence line high and neural network has being developed. In this paper,the neural network inversion is studied by means of the data set of global chlorophyll and in-situ radiance which was collected by SeaWiFS Bio-Optical Algorithm Mini-Workshop (SeaBAM). Finally,the result by neural network in the study is compared with that by Sea BAM’s empirical inversion.
Keywords:chlorophyll concentration  neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球信息科学学报》浏览原始摘要信息
点击此处可从《地球信息科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号