首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relativistic Time Transformations in GPS
Authors:J Kouba
Institution:(1) Geodetic Survey Division, NRCan, 615 Booth Street, Ottawa, Ontario, Canada, K1A 0E9, CA
Abstract:Since Selective Availability was permanently switched off on 7 May 2000, most of the GPS satellite clocks have been well behaved. During a 24-h period precise satellite clock solutions, corrected for GPS conventional relativistic corrections, follow straight lines within a few nanoseconds. The linear clock fit RMS for the best satellite clocks are well below the 1-ns level, which is consistent with the nominal stability of the GPS frequency standards. Typically, the GPS satellite clocks show an Allan variance at or below one part in 1011/100 s for the Cesium frequency standards and a few parts in 1012/100 s for the Rubidium frequency standards. These results correspond to clock RMSs for 15-min sampling at or below 3 and 0.3 ns, respectively. This already confirms experimentally that the conventional periodic relativity correction of the GPS system, also adopted for all the IGS clock solution products, is precise and correct to 0.6 ns or better. To establish the precision limits of the GPS conventional relativity treatment, the relativistic time transformations of GPS satellite frequency and clocks are critically reviewed, taking into account all the contributions larger than the 10−18 (or 0.001 ns). The conventional GPS relativity treatment was found to be accurate, i. e., correctly modeling the actual relativistic frequency (clock rate) effects of GPS satellites at about the 10−14 level. However, it is also affected by small periodic errors of the same magnitude. The integration of these small periodic frequency relativistic errors gives the approximation errors of the conventional periodic relativistic clock correction with amplitudes of about 0.1 ns and a predominant period equal to a half of the orbital period (∼ 6 h). These approximation errors of the conventional GPS relativistic clock correction are at about the same level as the current precision of the IGS clock solutions. ? 2002 Wiley Periodicals, Inc.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号