首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fusain in Carboniferous shallow marine sediments, Donegal, Ireland: the sedimentological effects of wildfire
Authors:GARY NICHOLS  TIM JONES†
Institution:Departments of Geology, Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, UK;Departments of Biology, Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, UK
Abstract:Evidence from fusain deposits in Lower Carboniferous rocks of western Ireland indicates that a catastrophic wildfire destroyed thousands of square kilometres of Carboniferous ‘forest’. In addition to yielding large quantities of charcoal, this wildfire event resulted in increased surface water runoff which affected sedimentation in an adjacent estuarine environment where the fusain is now preserved. This is the oldest documented evidence for a catastrophic palaeowildfire and a clear example of the sedimentological effects of large-scale fires. The Lower Carboniferous (Visean) rocks in the Largymore Syncline of western Donegal, Ireland, are shallow marine sandstones, mudstones and limestones. The Upper Shalwy Beds are mudstones and cross-bedded sandstones which show bi-polar cross-stratification and mud drapes on cross-bed foresets indicating deposition in a tidal environment, probably a large estuary. In three coastal exposures a bed containing up to 20% fusain is found at the same stratigraphic horizon. The fusain is interpreted as fossil charcoal produced by palaeowildfire in a land area to the north-west. The volume of fusain present in the unit can be estimated and by comparison with charcoal production in modern wildfires it has been calculated that around 95 000 km2 (more than the present land area of Ireland) was burnt. Along with the fusain, other effects of the wildfire can be seen in the deposits, which are poorly sorted compared to the rest of the Upper Shalwy Beds and are characterized by inclined heterolithic stratification produced by the draping of underlying bedforms. These features are considered to be due to a considerably increased sediment load in the estuary, resulting from enhanced surface runoff and soil erosion due to the wildfire.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号