首页 | 本学科首页   官方微博 | 高级检索  
     


Fluid description of a collisionless plasma and electric current systems in cosmic plasmas
Authors:A. Hruška
Affiliation:1. Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa, Canada
Abstract:The large-scale structure of a collisonless, two-component plasma with a typical Larmor radius of ions ? and scale-lengthL is discussed using Maxwell transport equations. Special attention is paid to the situations in which the usual one-fluid model of plasma based on the expansion of the transport equations in the powers of the ratio ?/L is not a satisfactory approximation. The one-fluid model fails if the magnetic-field-aligned component of the mass velocity or the magnetic-field-aligned component of the typical random velocity of particles is much larger than the other components of the mass and random velocities. The model also fails if the component of the typical random velocity of particles, which is perpendicular to the field lines, substantially exceeds the mass velocity of particles across the field lines. A quasi-static plasma is discussed as an example of plasmas on which the expansion in the powers of ?/L is not applicable. The relation between the electric current flowing in a quasi-static plasma (or in a hot plasma streaming along the field lines) and the topology of the magnetic lines of force is analysed. There are two distinguishable currents of different origin in such a plasma. Magnetic field generated by the currents acquires a geometry in which one current flows in the surfaces perpendicular to the binormals to the field lines while the other current flows along the binormals.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号