首页 | 本学科首页   官方微博 | 高级检索  
     

基于PS-InSAR技术的武威市地面沉降时空变化特征
引用本文:黄家乐, 苏小宁, 石睿娟, 鲍庆华, 赵立, 徐炜祥. 2024. 基于PS-InSAR技术的武威市地面沉降时空变化特征. 地质科学, 59(2): 575-587. doi: 10.12017/dzkx.2024.040
作者姓名:黄家乐  苏小宁  石睿娟  鲍庆华  赵立  徐炜祥
作者单位:1. 兰州交通大学测绘与地理信息学院 兰州 730070; 2. 地理国情监测技术应用国家地方联合工程研究中心 兰州 730070
基金项目:国家自然科学基金项目(编号:42174003,41604007)、甘肃省杰出青年基金项目(编号:22JR5RA315)和兰州交通大学青年科学基金项目(编号:2021003)资助
摘    要:

武威市位于甘肃省中部,是一座典型的农业城市,分布有大量农业耕地。由于土壤疏松,地面容易受到降水和地下水的影响,易发生地面沉降地质灾害对居民的生产、生活造成不利影响。本文利用2017年2月至2022年12月的Sentinel-1A数据,通过PS-InSAR技术提取了武威市的地面沉降监测数据,包括视线向形变速率和累积形变量。对形变场的时空分布特征进行了详细分析,并引入Mogi模型反演地下深部变形范围。最后,结合研究区的降水数据和GRACE重力卫星获取到由陆地水负荷引起的地表形变数据,并对研究区的沉降成因进行了初步分析。结果表明,研究区存在两个主要沉降区,其中主沉降区A的最大累积沉降量达到-290.9 mm,视线向形变速率为-52.0 mm/a;主沉降区B的沉降量达到-178.1 mm,视线向形变速率为-43.8 mm/a。地表沉降呈现周期性变化,且向东南方向逐步扩展,与降水和地下水变化特征相似。通过Mogi模型反演,得出了主沉降区的地下影响范围(半径)和深度,其中主沉降区A为40.96 m和133.67 m,主沉降区B为38.60 m和140.78 m。按季节划分统计形变数据,结果表明,由于研究区所属干旱区,自然降水无法对地面沉降产生显著影响,而农耕时大量地下水的抽取才是导致区域地面沉降的主要原因。



关 键 词:PS-InSAR   地面沉降   侵蚀性降水   地下水   Mogi模型
收稿时间:2023-11-05
修稿时间:2023-12-25

Temporal and spatial characteristics of ground subsidence in Wuwei City based on PS-InSAR technology
Huang Jiale, Su Xiaoning, Shi Ruijuan, Bao Qinghua, Zhao Li, Xu Weixiang. 2024. Temporal and spatial characteristics of ground subsidence in Wuwei City based on PS-InSAR technology. Chinese Journal of Geology, 59(2): 575-587. doi: 10.12017/dzkx.2024.040
Authors:Huang Jiale  Su Xiaoning  Shi Ruijuan  Bao Qinghua  Zhao Li  Xu Weixiang
Affiliation:1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070; 2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070
Abstract:Wuwei City, located in the central part of Gansu Province, is a typical agricultural city with extensive agricultural farmland. Due to loose soil, the ground is susceptible to the influence of precipitation and groundwater, leading to subsidence that adversely affects the production and livelihood of residents. In this study, we utilized Sentinel-1A data from February 2017 to December 2022 and employed PS-InSAR technology to extract ground subsidence monitoring data for Wuwei City. This data includes line-of-sight deformation rates and cumulative deformation values. A detailed analysis of the spatiotemporal distribution characteristics of the deformation field was conducted, and the Mogi model was introduced to invert the deep-seated deformation range. Finally, in conjunction with precipitation data for the study area and GRACE satellite-derived information on land water storage changes, an initial analysis of the causes of subsidence in the study area was performed. The research results indicate the presence of two main subsidence areas in the study region. In subsidence area A, the maximum cumulative subsidence reached -290.9 mm, with a line-of-sight deformation rate of -52.0 mm/a. In subsidence area B, the subsidence amounted to -178.1 mm, with a line-of-sight deformation rate of -43.8 mm/a. Ground subsidence exhibits periodic variations, gradually expanding towards the southeast, showing similarities with the characteristics of precipitation and groundwater changes. Through Mogi model inversion, the underground influence range(radius)and depth of the main subsidence areas were determined, with subsidence area A having values of 40.96 m and 133.67 m, and subsidence area B having values of 38.60 m and 140.78 m. Seasonal division and statistical analysis of deformation data revealed that, due to the study area being in an arid region, natural precipitation had a limited impact on ground subsidence, while the substantial extraction of groundwater during agricultural activities emerged as the primary cause of regional ground subsidence.
Keywords:PS-InSAR  Ground subsidence  Erosive precipitation  Groundwater  Mogi model
点击此处可从《地质科学》浏览原始摘要信息
点击此处可从《地质科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号