首页 | 本学科首页   官方微博 | 高级检索  
     

基于二维散射变换的湖相碳酸盐岩储层厚度预测方法研究
引用本文:杨阳, 雷友波, 王倩楠, 王治国, 杨涛, 高静怀, 苏朝光. 2024. 基于二维散射变换的湖相碳酸盐岩储层厚度预测方法研究. 地球物理学报, 67(4): 1601-1612, doi: 10.6038/cjg2023Q0974
作者姓名:杨阳  雷友波  王倩楠  王治国  杨涛  高静怀  苏朝光
作者单位:1. 西安交通大学信息与通信工程学院, 西安 710049; 2. 西安交通大学软件学院, 西安 710049; 3. 西安交通大学数学与统计学院, 西安 710049; 4. 中国石油化工股份有限公司胜利油田分公司物探研究院, 东营 257022
基金项目:国家自然科学基金项目(42304122, 41974137), 中国博士后科学基金面上项目(2022M712509), 陕西省自然科学基础研究计划项目(2021JM-009)和中央高校基本科研业务费专项资金(xjh012020039)联合资助
摘    要:

济阳坳陷沙四段湖相碳酸盐岩受湖盆内沉积环境和构造运动等因素控制, 储层厚度变化大, 非均质性强, 油气开发难度大.为了准确预测湖相碳酸盐岩储层的厚度, 本文提出一种基于二维散射变换和随机森林的储层厚度预测方法.首先, 引入二维散射变换提取地震时频属性, 该变换是在二维小波变换的基础上, 通过迭代小波分解和非线性操作来实现的.与传统的二维小波变换对比, 散射变换提取的时频属性具有局部形变稳定性以及对噪声鲁棒性的优点, 有助于提高储层厚度预测的准确率.在此基础上, 在有限测井数据的条件下, 利用随机森林算法建立多尺度时频属性与测井解释厚度之间的非线性关系, 实现湖相碳酸盐岩储层预测.模型数据的预测结果表明, 与基于传统地震振幅属性的厚度预测和基于二维小波变换的储层厚度预测对比, 本文所提的厚度预测方法具有最优的性能.叠后三维地震数据的预测结果表明, 与基于传统地震振幅属性的厚度预测和基于二维小波变换的储层厚度预测对比, 本文所提方法的厚度预测结果与实际钻井数据误差更小, 提高了储层厚度预测的精度, 清晰刻画了灰礁、灰滩与灰泥等三种沉积亚相的空间展布, 有利于后续井位部署和优化.



关 键 词:储层厚度预测   湖相碳酸盐岩   二维散射变换   随机森林
收稿时间:2022-12-09
修稿时间:2023-03-29

Reservoir thickness prediction method of lacustrine carbonate based on two-dimension scattering transformation
YANG Yang, LEI YouBo, WANG QianNan, WANG ZhiGuo, YANG Tao, GAO JingHuai, SU ChaoGuang. 2024. Reservoir thickness prediction method of lacustrine carbonate based on two-dimension scattering transformation. Chinese Journal of Geophysics (in Chinese), 67(4): 1601-1612, doi: 10.6038/cjg2023Q0974
Authors:YANG Yang  LEI YouBo  WANG QianNan  WANG ZhiGuo  YANG Tao  GAO JingHuai  SU ChaoGuang
Affiliation:1. School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. School of Software, Xi'an Jiaotong University, Xi'an 710049, China; 3. School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China; 4. Geophysical Research Institute, Shengli Oilfield Company, Sinopec, Dongying 257022, China
Abstract:The lacustrine carbonate rocks of the fourth member of Shahejie Formation in Jiyang Depression are controlled by the sedimentary environment and tectonic movement in the lacustrine basin. The thickness of the reservoirs varies greatly and the heterogeneity is strong, which makes it difficult to develop oil and gas. To accurately predict the thickness of lacustrine carbonate reservoirs, we propose a thickness prediction method for the lacustrine carbonate reservoirs based on the two-dimension scattering transform and random forest. First, the seismic time-frequency attributes are extracted by the two-dimensional scattering transform, which is generated by iterative wavelet decomposition and nonlinear operation based on two-dimensional wavelet transform. Compared with the traditional two-dimension wavelet, the scattering transform has local translation deformation stability, rotation deformation stability, and noise robustness, which are helpful to improve the accuracy of reservoir thickness prediction. Furthermore, due to the limitation of the well information, the random forest method is utilized to construct the nonlinear relationship between multi-scale scattering transform attributes and the interpreted thickness of the well. Then, the thickness prediction method of the lacustrine carbonate reservoir is proposed. Afterward, the synthetic seismic data is applied to the proposed method and the results reveal that the proposed method has the best performance in comparison with the traditional seismic amplitude attributes and the two-dimensional wavelet transform. Finally, the effectiveness of the proposed method is demonstrated by using the three-dimension post-stack seismic data. Compared with the prediction results based on traditional seismic amplitude attributes and the two-dimensional wavelet transform, the predicted result of the proposed method is completely consistent with the drilling well data, which can improve the accuracy of reservoir prediction. The proposed method can also identify the sedimentary sub-facies of the reef with limestone, the beach with limestone, and the plaster, which is beneficial for the subsequent well placement.
Keywords:Reservoir thickness prediction  Lacustrine carbonate  Two-dimension scattering transform  Random forest
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号