首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯方法的地壳厚度定量估算
引用本文:郑辉, 葛粲, 张明明, 顾海欧, 孙贺, 汪方跃, 李修钰. 2024. 基于贝叶斯方法的地壳厚度定量估算. 地质科学, 59(2): 522-534. doi: 10.12017/dzkx.2024.036
作者姓名:郑辉  葛粲  张明明  顾海欧  孙贺  汪方跃  李修钰
作者单位:1. 合肥工业大学资源与环境工程学院 合肥 230009; 2. 合肥工业大学矿集区立体探测实验室 合肥 230009; 3. 合肥工业大学安徽省矿产资源与矿山环境工程技术研究中心 合肥 230009; 4. 安徽省地质调查院 合肥 230001
基金项目:国家自然科学基金项目(编号:42272341,42273061)和科技部第二次青藏高原综合科学考察项目(编号:2019QZKK0708)资助
摘    要:

大陆地壳一直以来都扮演着记录过去40亿年地球演化历史的重要角色。现代板块汇聚边界形成的岩浆岩地球化学特征与岩浆活动时的地壳厚度高度相关,因此,一系列地球化学指标可作为地壳厚度的优秀示踪剂。然而,由于岩浆岩地球化学组成的复杂性,准确量化过去地质时期地壳厚度一直是一项具有挑战性的任务。本文基于地球化学大数据,运用贝叶斯方法,建立了一个利用多种地化指标(CaO、K2O、MnO、Dy、Ho、Lu、Y、Sr/Y、Ce/Y、La/Yb、Sm/Yb、Dy/Yb)定量估算地壳厚度的贝叶斯模型。利用中新世以来(<15 Ma)的全球数据验证表明,与传统的单指标方法相比,贝叶斯模型对现今地壳厚度提供了更准确的估计。利用该模型重建了新生代拉萨地块地壳厚度变化,重建结果表明,拉萨地块在50~30 Ma经历了多阶段地壳增厚,最终形成如今的巨厚地壳。



关 键 词:地壳厚度   大数据   贝叶斯   地球化学   定量估算
收稿时间:2023-10-08
修稿时间:2023-12-14

Quantitative estimation of crustal thickness based on Bayesian method
Zheng Hui, Ge Can, Zhang Mingming, Gu Haiou, Sun He, Wang Fangyue, Li Xiuyu. 2024. Quantitative estimation of crustal thickness based on Bayesian method. Chinese Journal of Geology, 59(2): 522-534. doi: 10.12017/dzkx.2024.036
Authors:Zheng Hui  Ge Can  Zhang Mingming  Gu Haiou  Sun He  Wang Fangyue  Li Xiuyu
Affiliation:1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009; 2. Laboratory of Three-Dimension Exploration for Mineral District, Hefei University of Technology, Hefei 230009; 3. Anhui Province Engineering Research Center for Mineral Resources and Mine Environments, Hefei University of Technology, Hefei 230009; 4. Geological Survey of Anhui Province, Hefei 230001
Abstract:The continental crust has played an important role in recording the Earth's evolution over the past four billion years. The geochemical characteristics of magmatic rocks formed by the modern plate convergence boundary are highly correlated with the crust thickness during magmatic activity, so a series of geochemical indicators can be used as excellent tracers of crust thickness. However, due to the complexity of the geochemical composition of magmatic rocks, accurately quantifying crustal thickness in past geological periods has been a challenging task. Based on large geochemical databases, a Bayesian model for the quantitative estimation of crustal thickness using various geochemical indices (CaO, K2O, MnO, Dy, Ho, Lu, Y, Sr/Y, Ce/Y, La/Yb, Sm/Yb, Dy/Yb) is established in this paper. Validation results using global data since the Miocene (< 15 Ma) show that the Bayesian model provides a more accurate estimate of present-day crustal thickness than traditional single-indicator methods. This model is used to reconstruct the crustal thickness changes of the Lhasa block in the Cenozoic. The reconstruction results show that the Lhasa block experienced multiple stages of crustal thickening from 50 Ma to 30 Ma, and finally formed today's extremely thick crust.
Keywords:Crustal thickness  Big data  Bayes  Geochemistry  Quantitative estimation
点击此处可从《地质科学》浏览原始摘要信息
点击此处可从《地质科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号