首页 | 本学科首页   官方微博 | 高级检索  
     

利用小波分解改进极移预报模型
引用本文:雷雨, 赵丹宁, 蔡宏兵, 徐劲松. 集成奇异谱分析与ARIMA模型预测日长变化[J]. 武汉大学学报 ( 信息科学版), 2023, 48(12): 2040-2048. DOI: 10.13203/j.whugis20210256
作者姓名:雷雨  赵丹宁  蔡宏兵  徐劲松
作者单位:1.西安邮电大学计算机学院, 陕西 西安, 710121;2.陕西省网络数据分析与智能处理重点实验室, 陕西 西安, 710121;3.宝鸡文理学院电子电气工程学院, 陕西 宝鸡, 721016;4.江苏师范大学江苏圣理工学院, 江苏 徐州, 221116
基金项目:陕西省自然科学基础研究计划(2023-JC-YB-057,2022JM-031);徐州市重点研发计划(KC1089)
摘    要:

高精度的日长(length of day,LOD)变化ΔLOD预报值在深空探测器跟踪、卫星自主导航和气候预测等领域具有重要作用。针对ΔLOD复杂的时变特性,首先,利用奇异谱分析(singular spectrum analysis,SSA)方法提取ΔLOD时间序列中的趋势项、周年项与半周年项等主成分,并基于SSA迭代插值算法对主成分进行外推;其次,采用差分自回归滑动平均(autoregressive integrated moving average,ARIMA)模型对扣除主成分的剩余项进行建模预测;最后,将SSA主成分外推值与ARIMA预测值相加获得ΔLOD预报值。选取国际地球自转与参考系服务组织发布的2000-01-01—2001-12-31的ΔLOD数据进行1~365 d跨度的预报实验,并将SSA+ARIMA预报结果与反向传播神经网络、广义回归神经网络和高斯过程等机器学习方法的预报结果进行对比分析。结果表明,SSA+ARIMA方法的预报精度优于几种机器学习方法,特别是中长期预报精度优势更为显著,其中,对于1~30 d短期和30~365 d中长期的预报,SSA+ARIMA方法的平均绝对预报误差相对于机器学习方法最大分别降低了39%和61%。



关 键 词:地球自转  日长变化  预报  奇异谱分析  差分自回归滑动平均
收稿时间:2021-09-25

Earth Rotation Monitoring,UT1 Determination and Prediction
LEI Yu, ZHAO Danning, CAI Hongbing, XU Jinsong. Prediction of Length of Day Using Singular Spectrum Analysis and Autoregressive Integrated Moving Average Model[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2040-2048. DOI: 10.13203/j.whugis20210256
Authors:LEI Yu  ZHAO Danning  CAI Hongbing  XU Jinsong
Affiliation:1.School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;2.Shaanxi Key Laboratory Network Data Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;3.School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji 721016, China;4.JSNU SPBPU Institute of Engineering, Jiangsu Normal University, Xuzhou 221116, China
Abstract:ObjectivesLength of day variation (ΔLOD) predictions play an important role in tracking and navigation of deep-space detector, precise determination of artificial satellite orbit and climate forecasting. In full consideration of the time-varying characteristics of ΔLOD, we present the application of a hybrid technique for predicting ΔLOD.MethodsThe ΔLOD predictions are generated by means of the combination of singular spectrum analysis (SSA) extrapolation for the linear trend, annual and semiannual oscillations in ΔLOD based on an iterative interpolation strategy, and autoregressive integrated moving average (ARIMA) stochastic prediction of SSA remaining residuals, referred to as SSA+ARIMA. In order to evaluate the effectiveness of this approach, the ΔLOD predictions up to 365 d into the future are calculated year-by-year for the 2-year period from Jan. 1, 2000 to Dec. 31, 2001 using the data covering the previous 10 years from International Earth Rotation and Reference Systems Service C04 series. The prediction results are analyzed and compared with those obtained by machine learning methods such as back propagation neural network (BPNN), general regression neural network (GRNN) and Gaussian process (GP).ResultsIt is shown that the accuracy of the predictions are better than that by machine learning methods in terms of the mean absolute error (MAE) of predictions, especially for medium and long-term predictions. Compared with the predictions obtained by the BPNN, GRNN and GP, the MAE of the proposed SSA+ARIMA predictions up to 30 d and 365 d in future is reduced by 39% and 61%, respectively.ConclusionsThe proposed method provides a new solution for ΔLOD prediction.
Keywords:Earth rotation  length of day variation  prediction  singular spectrum analysis  autoregressive integrated moving average
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号