首页 | 本学科首页   官方微博 | 高级检索  
     

中国洪水灾害风险区划及其成因分析
引用本文:沈伟豪, 钟燕飞, 王俊珏, 郑卓, 马爱龙. 多模态数据的洪涝灾害知识图谱构建与应用[J]. 武汉大学学报 ( 信息科学版), 2023, 48(12): 2009-2018. DOI: 10.13203/j.whugis20220509
作者姓名:沈伟豪  钟燕飞  王俊珏  郑卓  马爱龙
作者单位:1.武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉, 430079
基金项目:国家重点研发计划(2022YFB3903404);国家自然科学基金(42071350);测绘遥感信息工程国家重点实验室基金
摘    要:

洪涝灾害发生过程中观测数据多源异构(遥感影像、社交媒体文本、地理信息数据等),难以利用互补优势融合应用于风险评估和提供决策知识。研究基于多模态数据的洪涝灾害知识图谱构建方法,融合抽取遥感影像与社交媒体文本知识,形成多模态洪涝灾害知识图谱。基于自顶向下的方法细分领域概念,构建洪涝灾害领域本体层。通过深度残差全卷积神经网络对遥感影像进行智能解译,利用地理逆编码将影像解译信息转化为文本,实现影像信息到文本知识的转化。基于命名实体识别技术与关系抽取技术对社交媒体文本数据进行知识抽取。通过训练词向量,利用语义相似度计算关联文本知识与影像知识,实现多模态数据知识统一表达。以中国湖北省洪涝灾害为例,该方法将多源异构的数据高效转化为知识并进行关联,形成领域知识图谱,实现了多源异构数据到多模态知识的转化。在灾害不同时期提供相应应急措施,并且通过关联农业受灾面积、农作物类型、农作物价值实现湖北省洪涝灾害评估。该方法结合深度遥感解译、文本知识抽取技术以及语义相似度计算,实现了多源异构数据到多模态知识的转化。



关 键 词:知识图谱  多模态数据  洪涝灾害  知识抽取
收稿时间:2023-03-24

Flood Risk Zoning and Causal Analysis in China
SHEN Weihao, ZHONG Yanfei, WANG Junjue, ZHENG Zhuo, MA Ailong. Construction and Application of Flood Disaster Knowledge Graph Based on Multi-modal Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2009-2018. DOI: 10.13203/j.whugis20220509
Authors:SHEN Weihao  ZHONG Yanfei  WANG Junjue  ZHENG Zhuo  MA Ailong
Affiliation:1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Abstract:ObjectivesIn the process of flood disaster, the observed data is multi-source heterogeneous (remote sensing image, social media text, geographic information data, etc.), which makes it difficult to use complementary advantages to fuse and apply to risk assessment and provide decision-making knowledge. We study the construction method of flood disaster knowledge graph based on multi-modal data. Remote sensing images and social media text knowledge are integrated and extracted to form multi-modal flood disaster knowledge graph.MethodsBased on the top-down method, the domain concept is subdivided and the flood disaster domain ontology layer is constructed. Remote sensing images are intelligently interpreted by deep residual full convolutional neural network, and the image interpretation information is converted into text by geographic inverse coding to realize transformation from image information to text knowledge. Knowledge is extracted from social media textual data based on naming entity recognition and relationship extraction technique. By training word vectors, the semantic similarity is used to calculate the correlation between text knowledge and image knowledge, so as to achieve the unified expression of multi-modal data knowledge.ResultsTaking the flood disaster in Hubei Province, China as an example, the multi-source heterogeneous data are efficiently transformed into knowledge and correlated to form domain knowledge graph, which realizes the transformation from multi-source heterogeneous data to multi-modal knowledge, provides corresponding emergency measures in different periods of disasters, and realizes flood disaster assessment in Hubei Province by associating agricultural disaster area, crop type and crop value.ConclusionsThis method combines deep remote sensing interpretation, text knowledge extraction and semantic similarity calculation to realize transformation from multi-source heterogeneous data to multi-modal knowledge.
Keywords:knowledge graph  multi-modal data  flood disaster  knowledge extraction
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号