首页 | 本学科首页   官方微博 | 高级检索  
     

亚波长尺度裂缝地震散射分辨分析
引用本文:冯一琳, 魏伟, 付博烨, 符力耘. 2024. 亚波长尺度裂缝地震散射分辨分析. 地球物理学报, 67(1): 318-331, doi: 10.6038/cjg2023Q0822
作者姓名:冯一琳  魏伟  付博烨  符力耘
作者单位:1. 中国科学院地质与地球物理研究所, 中国科学院油气资源研究重点实验室, 北京 100029; 2. 中国科学院地球科学研究院, 北京 100029; 3. 中国科学院大学地球与行星科学学院, 北京 100049; 4. 北京工业大学城市建设学部, 北京 100124; 5. 中国石油大学(华东)深层油气重点实验室, 青岛 266580
基金项目:国家自然科学基金(41821002, 41720104006)资助
摘    要:

裂缝储层地震特征的准确识别已成为当前地震勘探的难点之一, 特别是深层礁滩或碳酸盐岩储层, 其大部分裂缝都在亚波长尺度, 按照传统地震反射四分之一波长几何分辨准则是不能完全分辨的.传统研究裂缝地震响应的方法主要基于各向异性等效介质理论, 但由于亚波长尺度裂缝微小且其地震反射弱并存在噪声干扰等问题, 故该传统方法逼近精度有限.然而, 这类部分可分辨裂缝可在地震散射范畴来分析和预测, 本文基于散射聚焦分辨分析理论, 提出了表征裂缝系统空间分布和形态特征的波数域散射成像矩阵方法, 据此计算了含裂缝与不含裂缝的波数域成像矩阵之间的振幅差异性和结构差异性, 从散射能量及其各向异性的角度分析了亚波长尺度裂缝的地震可识别性.均匀和复杂背景介质下的算例表明, 振幅差异性随裂缝厚度和密度的变化规律显著, 结构差异性随裂缝角度变化规律更加明显.同时讨论了随机噪声和排列长度等因素对裂缝系统地震散射可识别性的影响.排列长度和噪声对于裂缝厚度响应影响较小, 主要影响高角度裂缝的识别, 同时要求排列长度大于三倍目标深度才可应用该方法进行裂缝参数识别.



关 键 词:亚波长尺度   裂缝识别   波数域散射成像矩阵   振幅差异   结构差异
收稿时间:2022-10-14
修稿时间:2023-05-18

Seismic scattering resolution analysis of subwavelength scale fractures
FENG YiLin, WEI Wei, FU BoYe, FU LiYun. 2024. Seismic scattering resolution analysis of subwavelength scale fractures. Chinese Journal of Geophysics (in Chinese), 67(1): 318-331, doi: 10.6038/cjg2023Q0822
Authors:FENG YiLin  WEI Wei  FU BoYe  FU LiYun
Affiliation:1. Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. Institution of Earth Science, Chinese Academy of Sciences, Beijing 100029, China; 3. College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China; 4. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China; 5. Key Laboratory of Deep Oil and Gas (China University of Petroleum (East China)), Qingdao 266580, China
Abstract:Accurately identifying the seismic characteristics of fractured reservoirs has become one of the main challenges in current seismic exploration, especially for deep reefs or carbonate reservoirs, which are mostly sub-wavelength scale and cannot be fully resolved using the traditional quarter-wavelength geometric resolution criteria of seismic reflection. Traditional methods for studying the seismic responses of fractures mainly rely on anisotropic equivalent medium theory. This paper proposes a wavenumber-domain scattering imaging matrix method based on the scattering focusing resolution analysis theory to characterize the spatial distribution and morphological characteristics of fracture systems. Specifically, this method calculates the differences in amplitude and structure between wavenumber-domain imaging matrices with and without fractures. This paper analyzes the seismic recognizability of sub-wavelength scale fractures from the perspectives of scattering energy and anisotropy. Numerical cases under uniform and complex background media demonstrate that amplitude differences are better suited for identifying the thickness and density of fractures, while structure differences are better suited for identifying the angle of fractures. The paper also discusses how complex media, random noise and array length affect the seismic scattering recognizability of fracture systems. The array length has minimal effect on the response of fracture thickness, but it significantly affects the recognition of high-angle fractures. Therefore, it is necessary that the array length be at least three times the target depth.
Keywords:Subwavelength scale  Fracture identification  Wavenumber domain scattering imaging matrix  Amplitude difference  Structural difference
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号