首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assimilation and fractionation in adjacent parts of the same magme chamber: Vandfaldsdalen macrodike,East Greenland
Authors:Dennis Geist  Craig White
Institution:(1) Geology and Geological Engineering, University of Idaho, 83843 Moscow, ID, USA;(2) Geosciences, Boise State University, 83725 Boise, ID, USA
Abstract:The Vandfaldsdalen macrodike, which lies in the Skaergaard region of East Greenland, is a remarkably zoned fossil magma chamber, with a granophyric cap overlying cumulate gabboros. The intrusion is distinctly bimodal, with a large compositional discontinuity at the contact between the gabbro and granophyre. Although the exposed part of the macrodike is in contact with Tertiary basalts and sediments, the granophyre originated by assimilation of xenoliths derived from the underlying Archean basement. Sr and Nd isotopic ratios throughout the cumulate sequence are remarkably similar, indicating insignificant contamination of the gabbro by the granophyre. Modelling of the compositional effects of cooling and crystallization indicate that the cumulate pile resulted from fractional crystallization, with the complicating effects of trapped liquid and post-cumulus fractionation. The uppermost rocks in the mafic part, of the chamber (SiO2=62%; FeO*=12.4%) resulted from about 85% fractional crystallization. A transgressive sill of strongly fractionated magma (SiO2=67%; FeO*=8.8%) formed from extracted intercumulus liquid that was the result of 90% fractional crystallization of the original magma. Mass-balance indicates that typical granophyre is made up of about 75% dissolved xenoliths, by weight, and 25% mantle-derived basaltic magma. The magmas were not measurably affected by material exchange across the interface between the gabbro and granophyre. This magma chamber evolved by both assimilation and fractional crystallization, but the residual liquids formed by fractional crystallization were unaffected by assimilation. Heat exchange between were unaffected by assimilation. Heat exchange between the two parts of the chamber was obviously important, but there was insignificant material exchange. The inability of fractional crystallization and assimilation to affect the same liquid is related to the dynamic behavior of this particular magma chamber, particularly the buoyancy of granophyre relative to evolving tholeiitic magma.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号